VULCRAFI STEEL JOIST & JOIST GIRDERS VULCRAF #### **CONTACT THE VULCRAFT SALES CORPORATION OFFICE NEAREST YOU:** | Albuquerque, NM Area | Ft. Wayne/S. Bend, IN Area | Memphis, TN Area | San Francisco, CA Area | |-----------------------------------|----------------------------|------------------------------|------------------------| | Ph. (505) 892-0707 | Ph. (260) 337-1800 | Ph. (901) 751-3927 | Ph. (925) 229-1020 | | Fax (505) 892-2727 | Fax (260) 337-1801 | Fax (901) 751-3593 | Fax (925-229-2469 | | | | | | | Atlanta, GA Area | Grand Rapids, MI Area | Metro New York Area | Seattle, WA Area | | Ph. (770) 307-2111 | Ph. (616) 949-2106 | Ph. (732) 738-8188 | Ph. (425) 402-9011 | | Fax (770) 307-1800 | Fax (616) 949-6694 | Fax (732) 738-8288 | Fax (425) 482-6433 | | Baltimore, MD Area | Greensboro, NC Area | Miami, FL Area | St. Louis, MO Area | | Ph. (410) 998-0800 | Ph. (336) 294-9544 | Ph. (954) 785-8695 | Ph. (314) 894-6076 | | Fax (410) 998-0801 | Fax (336) 294-7636 | Fax (954) 785-8696 | Fax (314) 894-9173 | | | | | | | Birmingham, AL Area | Greenville, NC Area | Milwaukee/Green Bay, WI Area | Tampa, FL Area | | Ph. (205) 982-4394 | Ph. (252) 493-0333 | Ph. (262) 251-5666 | Ph. (813) 621-0684 | | Fax (205) 982-6885 | Fax (252) 493-0555 | Fax (262) 251-7065 | Fax (813) 626-4955 | | Boston, MA Area | Houston, TX Area | Minneapolis, MN Area | Upstate New York Area | | Ph. (603) 894-1146 | Ph. (281) 251-8857 | Ph. (763) 425-4399 | Ph. (315) 828-1730 | | Fax (603) 894-1149 | Fax (281) 251-9515 | Fax (763) 425-6905 | Fax (315) 828-1740 | | Chicago, IL Area | Indianapolis, IN Area | Nashville, TN Area | Youngstown, OH Area | | Ph. (630) 887-1400 | Ph. (317) 576-5399 | Ph. (615) 871-9385 | Ph. (330) 726-8833 | | Fax (630) 887-1477 | Fax (317) 576-5395 | Fax (615) 871-9252 | ` ' | | rdX (030) 007-1477 | FdX (317) 370-3393 | FdX (013) 67 1-9232 | Fax (330) 726-0694 | | Columbia, SC Area | Jackson, MS Area | North Alabama Area | | | Ph. (803) 732-5557 | Ph. (601) 992-3751 | Ph. (256) 845-2460 | CANADA | | Fax (803) 732-5551 | Fax (601) 992-3748 | Fax (256) 845-2823 | Ough as Aves | | Dallas TV Assa | La la contilla El Anna | Olds have a City OK Aves | Quebec Area | | Dallas, TX Area | Jacksonville, FL Area | Oklahoma City, OK Area | Ph. (603) 894-1146 | | Ph. (214) 340-1883 | Ph. (904) 880-1150 | Ph. (405) 715-2844 | Fax (603) 894-1149 | | Fax (214) 340-5897 | Fax (904) 880-1151 | Fax (405) 715-5855 | Toronto Area | | Dayton, OH Area | Kansas City, KS Area | Philadelphia, PA Area | Ph. (905) 607-7600 | | Ph. (937) 390-2300 | Ph. (913) 341-9299 | Ph. (610) 539-6516 | Fax (905) 607-7602 | | Fax (937) 390-2333 | Fax (913) 341-5764 | Fax (610) 539-6970 | Tax (303) 007 7002 | | Tax (937) 390 2333 | Tax (313) 341 3704 | 1 dx (010) 333 0370 | Vancouver Area | | Denver, CO Area | Knoxville, TN Area | Phoenix/Las Vegas Area | Ph. (604) 531-0133 | | Ph. (303) 757-6323 | Ph. (865) 690-6388 | Ph. (480) 730-3012 | Fax (604) 531-0133 | | Fax (303) 757-6324 | Fax (865) 690-6389 | Fax (480) 730-2824 | 1 dx (004) 331-0142 | | FdX (503) 737-0324 | rax (003) 090-0309 | rax (400) / 30-2024 | | | Des Moines, IA Area | Lexington, KY Area | Richmond, VA Area | | | Ph. (515) 270-2500 | Ph. (859) 271-2591 | Ph. (804) 379-3704 | | | Fax (515) 270-8849 | Fax (859) 271-2580 | Fax (804) 379-3709 | | | | | Salt Lake City, UT Area | | | De <mark>troi</mark> t, MI Area | Little Rock, AR Area | Ph. (801) 355-0431 | | | Ph. (<mark>248</mark>) 486-6166 | Ph. (501) 758-6424 | Fax (801) 621-0927 | | | Fax (248) 486-6169 | Fax (501) 758-6427 | | | | | Los Angeles, CA Area | San Antonio, TX Area | | | Fargo, ND Area | Ph. (714) 957-5713 | Ph. (210) 655-9070 | | | Ph. (701) 235-6605 | Fax (714) 957-8871 | Fax (210) 655-9504 | | | Fay (701) 225 0622 | • | | | Fax (701) 235-9632 #### **TABLE OF CONTENTS** | VULCRAFT DESIGN NOTICE | 4 | |---|--------------------------| | GENERAL INFORMATION | 5 | | How to Specify Concentrated Loads & Other Non-Uniform Loads on Steel Joists Joist Moment of Inertia and Deflection End Anchorage for Uplift Recycled Content - LEED Program | | | A. General Information B. K Series Specifications C. K Series LRFD and ASD Load Tables D. KCS Series LRFD and ASD Load Tables | 15 | | A. K Series Joist Substitutes B. 2.5K Series and Loose Outriggers C. K Series Top Chord Extensions and Extended Ends D. K Series Extensions LRFD and ASD Load Tables E. K Series Open web Steel Joists F. LH and DLH Series Details | 59 | | A. General Information B. LH and DLH Series Specifications C. LH Series LRFD and ASD Load Tables D. DLH Series LRFD and ASD Load Tables | 73 | | A. General Information B. Joist Girder Details C. Bottom Chord Brace Tables D. Joist Girders in Moment Resistant Frames E. Joist Girder Specifications F. Joist Girder LRFD and ASD Weight Tables | 119 | | FIRE RESISTANCE RATINGS WITH STEEL JOIST AND JOIST GIRDERS ECONOMICAL JOIST GUIDE | 159
171
197
203 | #### FRONT COVER PICTURE #### Birmingham Crossplex - Birmingham, Alabama This 50-meter Olympic swimming pool utilizes the Vulcraft DLH series joist. The joists span over the pool at a length of 155 feet and have a depth of 120 inches. Covering the joists in this beautiful Natatorium is Vulcraft's 3 inch acoustical, 16-gauge metal roof deck. This is part of a state-of-the-art 750,000 square foot, multi-purpose athletic and meeting facility. This world class complex also boasts an oval hydraulic track featuring a Mondotrack surface that is one of only six in the United States and one of eight worldwide. Other Nucor products are highlighted throughout the complex, including massive 260 foot long, 23 foot deep structural trusses which utilize Nucor's diverse selection of wide-flange members. # VULCRAFT LOCATIONS #### **ALABAMA** 7205 Gault Avenue N. Fort Pavne, Alabama 35967 P.O. Box 680169 Fort Payne, Alabama 35968 (256) 845-2460 • Fax: (256) 845-2823 email: sales@vulcraft-al.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### INDIANA 6610 County Road 60 P.O. Box 1000 St.Joe, Indiana 46785 (260) 337-1800 • Fax; (260) 337-1801 email: sales@vulcraft-in.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **NEBRASKA** 1601 West Omaha Avenue Norfolk, Nebraska 68701 P.O. Box 59 Norfolk, Nebraska 68702 (402) 644-8500 • Fax: (402) 644-8528 email: sales@vulcraft-ne.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **NEW YORK** 5362 Railroad Street P.O. Box 280 Chemung, New York 14825 (607) 529-9000 • Fax: (607) 529-9001 email: sales@vulcraft-ny.com ISO 9001 Certified ISO 14001 Certified **Joists & Deck** # VULCRAFT LOCATIONS #### **SOUTH CAROLINA** 1501 West Darlington Street P.O. Box 100520 Florence, South Carolina 29501 (843) 662-0381 • Fax: (843) 662-3132 email: sales@vulcraft-sc.com > ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **TEXAS** 175 County Road 2345 P.O. Box 186 Grapeland, Texas 75844 (936) 687-4665 • Fax: (936) 687-4290 email: sales@vulcraft-tx.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### UTAH 1875 West Highway 13 South P.O. Box 637 Brigham City, Utah 84302 (435) 734-9433 • Fax: (435) 723-5423 email: sales@vulcraft-ut.com ISO 9001 Certified ISO 14001 Certified Joists #### A WORD ABOUT QUALITY In manufacturing steel joists, there can be no compromise on quality. Your business depends on it. Our reputation and success depends on it. As the largest manufacturer of steel joists and joists girders in the United States, a lot of buildings and a lot of people depend on Vulcraft for consistently high standards of quality that are demonstrated in reliable performance. In the manufacturing of steel joists and joist girders, Vulcraft uses high quality steel. Welding to exact specifications is the key to making structurally sound joists — and the most critical step in the entire process. This being the case, all Vulcraft welders are qualified to American Welding Society standards. All welds are in accordance with the Steel Joist Institute's welding criteria and all Vulcraft joists are manufactured to meet the specified design loads of the specifying professional. To further insure the precision and quality of every weld, every Vulcraft quality assurance inspector is also certified to these same high standards. Furthermore Vulcraft's quality assurance supervisors report directly to the engineering manager. Vulcraft also employs an ongoing program of mechanical testing that includes full scale load tests at every facility. As the leading manufacturer of steel joists and joist girders in the United States, Vulcraft's reputation depends on successfully managed quality control programs. That's why quality is important at Vulcraft. You have our word on it. #### NOTICE Vulcraft, a Division of Nucor Corporation, has provided this catalog for use by engineers and architects in designing and using Vulcraft open web joists and open web girders. It includes all products available at the time of printing. Vulcraft reserves the right to change, revise or withdraw any products or procedures without notice. The information presented in this catalog has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability and applicability by an engineer, architect or other licensed professional. Vulcraft is a manufacturer of open web steel joists, joist girders, floor deck and roof deck. Vulcraft employs a staff of engineers for the design, manufacture and marketing of its products. Vulcraft does not accept the responsibility
as the design professional of record for any structure. Vulcraft accepts the delegation of the engineering responsibility only for the products it manufactures, provided the application and applicable loading for these products are specified by the design professional of record. Vulcraft provides engineering for the design of its products and does not displace the need on any project for a design professional of record. #### **FLOOR VIBRATION** Floor vibration occurs, in varying degrees, in all types of building construction. Unlike steady state vibration, which can be isolated, vibration due to human impact is inconsistent in amplitude and frequency and therefore, more difficult to control. The Steel Joist Institute and Nucor Research and Development have studied this phenomenon for many years. Laboratory research has been performed and numerous buildings, exhibiting both good and bad characteristics, were tested using seismic recording instruments. AISC / CISC Steel Design Guide 11 (1997) discusses in detail methods for calculating vibrational properties for joist supported floors. The vast majority of structures, including those utilizing steel joists, do not exhibit floor vibrations severe enough to be considered objectionable. However, human sensitivity to vibratory motion varies, and a satisfactory framing solution is dependent upon the sound judgment of qualified structural engineers. #### **DEFINITIONS** Floor vibration is measured in terms of acceleration amplitude, displacement amplitude, and frequency. These factors are not objectionable to all people at the same level since human sensitivity varies. Acceleration amplitude is the maximum acceleration caused by a force excitation. Displacement amplitude is the magnitude or total distance traveled by each oscillation of the vibration. Frequency is the speed of the oscillations and is expressed in cycles per second or Hz. Acceleration is the only vibration factor which humans can sense. Damping is the rate of decay of amplitude. The following observations, which were determined from research data to be beneficial in reducing vibration levels, are recommended only as a guide. OPEN FLOOR AREAS are most subject to vibrational problems. Modern "electronic offices" tend to have lower live loading and damping, and hence can potentially be more prone to floor vibration. Partitions, file cabinets, book stacks, heavy furnishings and even crowds of people provide additional damping and minimize complaints. THICKER FLOOR SLABS are an economical solution to floor vibration. Additional thickness increases floor system stiffness transverse to the joists, thus reducing the vibration. The additional mass of the system will reduce the objectionable vibration. WIDER JOIST SPACINGS improve vibrational characteristics only when combined with thicker floor slabs. The resulting increase in joist size does not contribute significantly to the composite section. When used with a thicker slab, greater resistance to vibration can be achieved, and, since fewer pieces must be installed, may be more economical. PARTITIONS introduce damping and usually eliminate vibration problems. They will be effective either above or below a floor as long as they are connected to the floor. Partitions below a joist supported floor ideally should be in direct contact with the steel deck. If partitions below a joist supported floor are in direct contact with the joists, the joist bottom chord and webs must be designed for such intermediate support conditions. Consideration should be given to potential changes in occupancy of a floor over the expected life expectancy of the building. Going from a paper office to an electronic office along with removal of partitions can cause unexpected vibration problems. SUPPORT FRAMING BEAMS sometimes contribute to floor vibration. The natural frequency and amplitude for both the joist and supporting joist girders or hot-rolled girders need to be calculated. In this manner the resulting system acceleration or displacement and frequency can be determined from which the performance of the system can be predicted. INCREASING JOIST STIFFNESS above that which is required by live load deflection may be beneficial. A higher frequency floor is generally a better floor for most applications. Increasing the stiffness of the steel joists themselves results in increasing the frequency and slightly decreasing the acceleration or displacement of the floor vibration. BRIDGING of all standard types provide equal floor vibrational characteristics. LONGER FLOOR SPANS have many advantages over shorter spans, both in construction cost and in vibrational response. Floor spans over 40 feet with a 2-1/2" thick concrete slab give a vibrational frequency in the 3 - 5 cycles per second range. There are many long spanning joist supported floors that perform satisfactorily, A careful evaluation should be made by the specifying professional determining predicted floor vibration properties. PC-based software to evaluate vibration of joist supported floor systems is available from the STEEL JOIST INSTITUTE And STRUCTURAL ENGINEERS, INC. 234 W. Cheves Street 537 Wisteria Drive Florence, SC 29501 Radford, VA 24141 phone (843) 407-4091 phone (540) 731-3330 #### CONCLUSIONS: Partitions usually eliminate vibration problems. When a floor area cannot have partitions, increasing the joist stiffness and/or increasing the slab thickness are the most economical and effective ways to reduce objectionable vibrations. For more information refer to Steel Joist Institute Technical Digest No. 5 "Vibration of Steel Joist-Concrete Slab Floors", and the AISC / CISC Steel Design Guide 11 "Floor Vibrations Due to Human Activity". #### HOW TO SPECIFY JOISTS FOR CONCENTRATED LOADS ON STEEL JOISTS When specifying joists for concentrated loads, the specifying professional should first attempt to specify a larger standard joist or a KCS series joist. The joist specified must have adequate moment and shear resistance throughout the length of the joist. The shear resistance of K or LH series joists varies throughout the length of the joist. The shear capacity of the joist must be checked at every location by use of a shear diagram showing the allowable shear envelope created by the uniform design load of the joist (given in the table), versus the actual shear diagram. This diagram can be easily drawn with free software (Vulcraft Assistant Program) available at our web site www.vulcraft.com. The following diagram is an example of a 40' joist with a 180 plf uniform load plus a concentrated load of 1900 lbs. at 17' from the left end. In this case, using the developed 399 plf load, either a 30K10SP with an 11% stress reversal, or a standard 26KCS3 could be specified. Web members have a 5% stress reversal reserve capacity. If a stress reversal is larger than 5%, clearly specify the stress reversal with the joists. All joists with special design requirements shall be suffixed with an "SP". When a suitable K or KCS series joist cannot be specified, use the required moment and shear to select a LH series joist or use double joists to attain the required capacity. Note that LH series have deeper standard bearing depths than K or KCS series joists. Regardless of whether K-series, KCS-series or LH-series joists are specified, it is important to note that even though sufficient shear and moment capacity are provided within the special joist, the localized bending of the chord members due to concentrated loading between panel points is not considered. The joist design generally presumes that all concentrated loads are to be applied at panel points. When this is not the case, the specifying professional must specify on the structural drawings of the contract documents that a field installed member be located at all concentrated loads not occurring at panel points (see detail below). If the magnitude and locations of all loads are provided on the structural drawings, Vulcraft can design for the localized chord bending due to the load at the locations given. The second alternative is the most economical. #### VARYING UNIFORM LOADS ON STEEL JOISTS The selection process of a joist for varying uniform loads such as drift loads or stepped uniform loads is essentially the same as that for concentrated loads. For K-series joists where the uniform load exceeds 550 pounds per lineal foot, the only options are: double joists or the use of special (SP) joists. Again a load diagram should be shown on the structural drawings. #### **CONCENTRATED LOADS AT JOIST CHORDS** # TYPICAL JOIST REINFORCEMENT AT CONCENTRATED LOADS For nominal concentrated loads between panel points, which have been accounted for in the specified uniform design loads, a "strut" to transfer the load to a panel point on the opposite chord shall not be required, provided the sum of the concentrated loads within a chord panel does not exceed 100 pounds and the attachments are concentric to the chord. Although standard **K**-Series, including **KCS**-Series, and standard **LH**-Series joists are designed specifically to support uniformly distributed loads applied to the top chord, research conducted by the Steel Joist Institute, using second-order inelastic analysis, has demonstrated that the localized accumulation of uniform design loads of up to 100 pounds within any top or bottom chord panel has a negligible effect on the overall performance of the joist, provided that the load is applied to both chord angles in a manner which does not induce torsion on the chords. Concentrated loads in excess of 100 pounds or which do not meet the criteria outlined above must be applied at joist panel points or field strut members must be utilized as shown in the detail above. Joist manufacturers can provide a specially designed joist with the capability to take point loads without the added members if this requirement and the exact location and magnitude
of the loads are shown on the contract drawings. Also, the manufacturer can consider the worst case for both the shear and bending moment for a traveling load with no specific location. When a traveling load is specified, the contract drawings should indicate whether the load is to be applied at the top or bottom chord, and at any panel point, or at any point with the local bending effects considered. For additional information see SJI Code of Standard Practice, Section 2.3 – Specifying Design Loads. #### JOIST MOMENT OF INERTIA AND DEFLECTION The moment of inertia of **K**-Series and **LH/DLH-** series joists in the load table can be estimated using the following equations: $I_J = 26.767$ (W) (L³) (10⁻⁶) ASD, US Customary Units with W in plf and L = Span – 0.33 in feet $I_J = 2.6953$ (W) (L³) (10⁻⁵) ASD, Metric Units with W in kN/m and L = Span -102 in mm The equations shown above provide an approximate "gross" moment of inertia, not including the effects of shear deformation. An open web steel joist can be expected to have approximately 15 percent more deformation than a solid web member. When a conventional beam formula is used to calculate joist deflection, a factor of 1.15 should be applied to account for the web shear deformation. #### **Example:** #### Find the Inertia for a 24K7 @ 40'-0": SJI tables 253 / 148 I_J = 26.767 (W) (L³) (10⁻⁶) where W = RED figure in the Load Table and L = (Span - 0.33) in feet. $$I_J = 26.767(148) (40 - 0.33)^3 (10^{-6}) = 247 \text{ in}^4$$ #### **Compute Joist Deflection:** Increase deflection 15% to account for shear deformation in webs. $(1.15)(5WL^4/384EI)$ $(1.15)(5)(148/12)[(40 - 0.33) \times 12)]^4 / [(384)(29 \times 10^{-6}) (247)] = 1.32$ " Verify the RED number represents the joist loading that produces L/360 deflection $$L/360 = (40 - 0.33) \times 12/360 = 1.32$$ " The 15 percent approximation also applies to the deflection equations when using the Joist Girder moment of Inertia equations. For a Load/Load LH-Series joist type, the Weight Table includes an estimated moment of inertia value, so an equation is not needed for approximation. #### **END ANCHORAGE FOR UPLIFT** For wind uplift conditions it is the responsibility of the **specifying professional** to specify the wind uplift forces and the attachment of the joist or Joist Girder seat to the supporting element. It is the responsibility of the joist manufacturer to design the joist seat for the specified uplift. See Section 6.1(b) of the SJI Code of Standard Practice. #### **Welded Anchorage** The strength of the joist bearing seat for an uplift loading combination is a function of both the joist seat thickness and length of the end anchorage welds. The minimum end anchorage welds from the SJI Specifications may not develop the full capacity of the joist seat assembly for the specified uplift resistance. Where appropriate, a longer end anchorage weld length aids the joist manufacturer in providing an economical design of the joist bearing seat. The joist manufacturer will provide a seat of sufficient thickness and strength to resist the specified uplift end reaction. To aid in the design and efficiency of the joist bearing seat, it is suggested that the minimum weld lengths of the Specification be increased by one inch whenever there is a net uplift load case, and there is sufficient bearing length to place the longer weld. For a **K-**Series joist, the minimum weld size and length is (2) 1/8" x 2" long, and the minimum required bearing length (on steel) is 2-1/2". Where uplift is present and the bearing length is at least 3", specifying a one inch longer anchorage weld, (2) 1/8" x 3", will allow the joist manufacturer to engage more of the seat length for uplift resistance and provide a more economical seat design. For an **LH/DLH-**Series joist, SJI recommends the same as **K-**Series, to increase the weld length by 1". The minimum bearing lengths for **LH/DLH-** joists are such that there should be sufficient bearing length for the longer weld. Table 1 below demonstrates these suggestions. TABLE 1 | JOIST SERIES and | MINIMUM | SUGGESTED INCREASED | |-----------------------|----------------|---------------------| | SECTION NUMBER | FILLET WELD | WELD LENGTH | | K-Series | (2) 1/8" x 2" | (2) 1/8" x 3" * | | LH-Series, 02-06 | (2) 3/16" x 2" | (2) 3/16" x 3" | | LH/DLH-Series, 07-17 | (2) 1/4" x 2" | (2) 1/4" x 3" | | DLH-Series, 18-25 | (2) 1/4" x 4" | | ^{*} The minimum bearing length on steel for K-Series joists is 2 1/2", so weld length should be increased only where bearing length is available. #### **Bolted Anchorage** Typically, joists and Joist Girders with bolted end anchorage also require a final connection by welding in order to provide lateral stability to the supporting member. However, only the bolts are relied on to provide uplift anchorage. The bolt type and diameter designated by the **specifying professional** shall provide sufficient tensile strength to resist the specified uplift end reaction. Higher strength bolts than the minimums required by the SJI Specification may be required. If the bearing seats are detailed for a bolted connection, bolts shall be installed. If the bolts are not installed, an equivalent welded connection may be permitted by the **specifying professional**, provided the weld is deposited in the slot on the side farthest from the edge of the seat. Additional weld required to meet that specified for the welded connection shall be placed at a location on the seat away from the outer edge of the slot as shown in Figure 1. Figure 1 For additional information on uplift, see SJI Technical Digest 6. #### 2011 RECYCLED CONTENT OF NUCOR STEEL PRODUCTS FOR THE L.E.E.D.® PROGRAM Nucor Corporation is the nation's largest recycler, using almost 19 million tons of scrap steel in 2011 to create new products. Nucor uses Electric Arc Furnace (EAF) technology at all of its steel producing facilities. EAFs use post-consumer scrap steel material as the major feedstock, unlike blast furnace operations that use mined iron ore as the major feedstock. Nucor has prepared the following information to help calculate the recycled content for products being used with "Green Building" applications or for projects in the LEED® program. These percentages are approximate and based on the total weight of the products. The calculations are based on 2011 scrap steel delivered and finished materials produced and are defined in accordance with ISO 14021:1999. More specific product information may be available from facility representatives. #### RECYCLED CONTENT - LEED Version 2.2 Credit 4.1 & 4.2 and LEED V 3 Credit 4 | 2011 Recycled Steel Content of Nucor Prod <mark>uct</mark> s(*)
(% by Total Weight) | | | | | | | | | |--|--------------------------|--|--|--|--|--|--|--| | Product Group | Average Recycled Content | | | | | | | | | Nucor Bar Products | 97.7% | | | | | | | | | Nucor Beam Products (and Nucor Castrip® Arkansas, LLC's sheet products) | 80.1% | | | | | | | | | Nucor Plate Products | 88.5% | | | | | | | | | Nucor Sheet Products | 72.0% | | | | | | | | | Nucor Castrip® Crawfordsville, IN | 94.0% | | | | | | | | | Total Nucor Steel Combined | 89.5% | | | | | | | | | Vulcraft Structural Products | 97.7% | | | | | | | | | Vulcraft Decking | 72.0% | | | | | | | | | Nucor Building Group | 89.5% | | | | | | | | | Nucor Fastener Products | 97.7% | | | | | | | | | Nucor Wire Products | 97.7% | | | | | | | | | Nucor Cold Finish | 97.7% | | | | | | | | #### REGIONAL MATERIALS - LEED Version 2.2 Credit 5.1 & 5.2 and LEED Version 3 Credit 5 Nucor tracks the origin of all scrap shipments to our mills. Nucor can approximate the amount of scrap extracted from any project site region. Nucor owns steel and steel products manufacturing facilities throughout the US that are offen within 500 miles of the project site. Please refer to the LEED Contact List (www.nucor.com/responsibility/environment/leed, then click on "Nucor Regional Material Contacts"), and contact the specific Nucor representative at the facility directly. BAR MILL GROUP - Darlington, SC; Norfolk, NE; Jewett, TX; Plymouth, UT; Auburn, NY; Birmingham, AL; Kankakee, IL; Jackson, MS; Seattle, WA; Marion, OH; Memphis, TH; Kingman, AZ | 2011 Approximate Recycled Steel Content of all Nucor Bar Mill Group Products(*) | | | | | | | | | |---|--------------------------|--------------------------------------|---|---|--|--|--|--| | Facility | Total Scrap
Steel Use | Total Alloys and
Other Iron Units | Total Post-consumer
Recycled Content | Total Pre-consumer/
Post- industrial
Recycled Content | | | | | | All | 97.7% | 2.3% | 81.1% | 16.6% | | | | | The Nucor Bar Mill Group produces rebar, angles, flats, rounds and other miscellaneous shapes. The bar mill group uses recycled scrap steel for over 97.7% of the feedstock. SHEET MILL GROUP - Crawfordsville, IN; Hickman, AR; Huger, SC; Decatur, AL | 2011 Approximate Recycled Steel Content of all Nucor Sheet Mill Group Products(*) | | | | | | | | |---|--------------------------|--|-------|-------|--|--|--| | Facility | Total Scrap
Steel Use | Total Pre-consumer/
Post-industrial
Recycled Content | | | | | | | Crawfordsville, IN | 83.9% | 16.1% | 69.6% | 14.3% | | | | | Nucor Castrip®
Crawfordsville, IN | 94.0% | 6.0% | 78.4% | 16.0% | | | | | Hickman, AR | 73.7% | 26.3% | 61.1% | 12.5% | | | | | Berkeley, SC | 62.2% | 37.8% | 51.6% | 10.6% | | | | | Decatur, AL | 68.3% | 31.7% | 56.7% | 11.6% | | | | The Nucor Sheet Mill Group produces hot band, cold rolled, pickled and galvanized
products. Nucor Sheet mills use varying amounts of recycled materials depending on metallurgical product demands and market conditions. The combined sheet mill total recycled content is approximately 72.0%. #### BAR MILL GROUP - Blytheville, AR; Huger, SC | 2011 Approximate Recycled Steel Content of Beam Mill Products(*) | | | | | | | | | |---|--------------------------|--------------------------------------|---|--|--|--|--|--| | Facility | Total Scrap
Steel Use | Total Alloys and
Other Iron Units | Total Post-consumer
Recycled Content | Total Pre-consumer/
Post-industrial
Recycled Content | | | | | | Nucor Yamato Steel,
Blytheville, AR
and Nucor Castrip [®]
Arkansas, LLC | 99.2% | 0.8% | 82.3% | 16.9% | | | | | | Nucor Berkeley,
Huger, SC | 61.0% | 39.0% | 50.6% | 10.4% | | | | | Nucor Beam mills produce narrow and wide flange structural beams. Nucor Yamato uses approximately 99.2% scrap steel for their feedstock. Nucor Castrip Arkansas, LLC uses steel melted at Nucor Yamato and products would be equivalent. Nucor Steel Berkeley uses a higher percentage of non-scrap iron due to metallurgical product demands for sheet steel produced using the same EAF's. The combined beam mill recycled content is approximately 80.1%. #### PLATE GROUP - Hertford County, NC; Tuscaloosa, AL | 2011 Approximate Recycled Steel Content of Plate Mill Products(*) | | | | | | | | | |---|--------|----|--------------------------|--------------------------------------|---|--|--|--| | Facility | | | Total Scrap
Steel Use | Total Alloys and
Other Iron Units | Total Post-consumer
Recycled Content | Total Pre-consumer/
Post-industrial
Recycled Content | | | | Hertford Cou | nty, N | IC | 99.6% | 0.4% | 82.7% | 16.9% | | | | Tuscaloosa | a, AL | | 77.4% | 22.6% | 64.3% | 13.2% | | | The Nucor Plate combined recycled content by weight is approximately 88.5%. ^(*) Studies show that the recycled steel used for Nucor products consists of approximately 83% post-consumer scrap. The remaining 17% typically consists of pre-consumer scrap generated by manufacturing processes. <u>VULCRAFT GROUP</u> - Florence, SC; Norfolk, NE; Brigham City, UT; Grapeland, TX; St. Joe, IN; Fort Payne, AL; Chemung, NY; Verco Decking, Inc. – Phoenix, AZ; Fontana, CA; Antioch, CA **JOISTS** - The bar steel for Vulcraft joists is obtained from one of the eleven Nucor bar mills. That would mean that the average recycled content percentage for the Vulcraft group is 99.7%. The post consumer and pre consumer recycled content have been calculated to be approximately 81.1% and 16.6% respectively. **DECK** – Steel for decking produced by Vulcraft facilities are typically obtained from one of the four Nucor sheet mills. That would mean that the Vulcraft deck products contain approximately 72.0% recycled steel. The post consumer and pre consumer recycled content have been calculated to be approximately 59.8% and 12.2% respectively. Verco Decking, Inc. may obtain steel from sources outside of Nucor that may contain lower amounts of recycled content; specific product information regarding Verco Decking, Inc. is available from facility representatives. #### **PRODUCTS GROUP** - Nucor Building Group - Nucor Building Systems Swansea, SC; Waterloo, IN; Terrell, TX; Brigham City, UT - American Buildings Company Eufaula, AL; La Crosse, VA; Carson City, NV; El Paso, IL - Kirby Building Systems Portland, TN - Gulf States Manufacturer Starkville, MS - CBC Steel St. Joe, IN - Nucor Fastener St. Joe, IN - Nucor Wire Products Pennsylvania New Salem, PA; Nucor Steel Connecticut Wallingford, CT; LMP Steel Maryville, MO - Nucor Cold Finish Milwaukee, WI; Darlington, SC; Brigham City, UT; Norfolk, NE - Nucor Steel Kingman, LLC **Nucor Building Group** (Including American Buildings Company, Kirby Building Systems, Gulf States Manufacturer and CBC Steel) – Nucor Building Group products may contain steel from all of the Nucor steel mills or obtain steel from outside of Nucor Corporation for their sheet, plate, bar and beam steel needs. The Nucor Building Systems, when using Nucor steel, contains an average of 89.5% total recycled content. The post and pre consumer recycled content was 74.3% and 15.2% respectively. **Nucor Fastener** – Steel for Nucor fasteners is typically obtained from Nucor bar mills that use scrap steel as their feedstock. Some fasteners may contain high percentages of alloys that may reduce the total recycled content of the products, but Nucor Fastener products typically contain 97.7% recycled materials. That would mean that the post and pre consumer recycled content would be approximately 81.1% and 16.6% respectively. **Nucor Wire Products Pennsylvania**, **Nucor Connecticut**, **LMP Steel** – Steel for wire is typically obtained from a Nucor bar mill that uses scrap as the feedstock. Nucor wire products, when using Nucor bar steel, would contain an average 97.7% recycled steel. The post and ore consumer recycled content was calculated to be approximately 81.1% and 16.6% respectively. **Nucor Cold Finish** – Steel processed at Nucor Cold Finish is typically obtained from Nucor bar mills. The Nucor Cold Finish, when using Nucor steel, would contain an average amount of 97.7% recycled steel. The post and pre consumer recycled content was calculated to be approximately 81.1% and 16.6% respectively. **Nucor Steel Kingman, LLC** – Steel for Nucor Steel Kingman, LLC products is typically obtained from Nucor bar mills that use scrap steel as their feedstock. Nucor Steel Kingman, LLC products would then typically contain 97.7% recycled materials. That would mean that the post and pre consumer recycled content would be approximately 81.1% and 16.1% respectively. Additional information regarding specific recycled content of Nucor Corporation Products Group for a customer's specific order is available from facility representatives. Additional information is available online through the Steel Recycling Institute at http://www.recycle-steel.org. | 10120 | | |-------|---| X | Ť | NOTES #### **VULCRAFT K SERIES/GENERAL INFORMATION** **ECONOMICAL HIGH STRENGTH DESIGN** - Vulcraft K Series open web steel joists are designed in accordance with specifications of the Steel Joist Institute. ACCESSORIES see page 63. FOR TOP CHORD EXTENSIONS AND EXTENDED ENDS see page 60. SJI SPANS TO 60'-0" **PAINT** - Vulcraft joists receive a shop-coat of rust inhibitive primer whose performance characteristics conform to those of the Steel Joist Institute specifications 3.3. **SPECIFICATIONS** see page 16. KCS SERIES JOIST see page 54. **TABLE 2.7-1a** | | | | K-SERIES | SJOISTS | | | | | |--------------------------|-----------------|-------------|--------------|--------------|--------------|-------------|--------------|--| | | M.A | XIMUM JOIS | T SPACING F | OR HORIZON | TAL BRIDGIN | IG | | | | BRIDGING MATERIAL SIZE** | | | | | | | | | | | | | | Equal Le | eg Angles | | | | | JOIST | Bridging | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | 2-1/2 x 5/32 | | | SECTION | Force | (25 x 3 mm) | (32 x 3 mm) | (38 x 3 mm) | (45 x 3 mm) | (52 x 3 mm) | (64 x 4 mm) | | | NUMBER* | P _{br} | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r = 0.50" | | | | | (5.08 mm) | (6.35 mm) | (7.62 mm) | (8.89 mm) | (10.16 mm) | (12.70 mm) | | | | lbs (N) | ftin. (mm) | | | 1 to 8, incl. | 340 | 5'- 0" | 6'- 3" | 7'- 6" | 8'- 7" | 10'- 0" | 12'- 6" | | | 1 to 6, mei. | (1512) | (1524) | (1905) | (2286) | (2616) | (3048) | (3810) | | | 9 to 10, incl. | 450 | 4'- 4" | 6'- 1" | 7'- 6" | 8'- 7" | 10'- 0" | 12'- 6" | | | 9 to 10, mci. | (2002) | (1321) | (1854) | (2286) | (2616) | (3048) | (3810) | | | 11 to 12, incl. | 560 | 3'- 11" | 5'- 6" | 7'- 3" | 8'- 7" | 10'- 0" | 12'- 6" | | | 11 10 12, 11101. | (2491) | (1194) | (1676) | (2210) | (2616) | (3048) | (3810) | | ^{*}Refer to last digit(s) of Joist Designation ^{**}Connection to joist shall resist a nominal unfactored 700 pound force (3114 N) #### CODE OF STANDARD PRACTICE FOR STEEL JOISTS AND JOIST GIRDERS #### **TABLE 2.7-2** # K, LH, and DLH SERIES JOISTS MAXIMUM JOIST SPACING FOR DIAGONAL BRIDGING | | | | BRIDGI | NG ANGLE S | IZE – (EQUAL | LEG ANGLE) | | | |-------|-----------|--------------|---------------------|--------------|--------------|------------|------------------|-----------| | JOIST | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | 2 ½ x 5/32 | 3 x 3/16 | 3 ½ x 1/4 | | DEPTH | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r = 0.50" | r = 0.60" | r = 0.70" | | in. | ft | 12" | 6'-7" | 8'-3" | 9'-11" | 11'-7" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 14" | 6'-6" | 8'-3" | 9'-11" | 11'-7" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 16" | 6'-6" | 8'-2" | 9'-10" | 11'-7" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 18" | 6'-6" | 8'-2" | 9'-10" | 11'-6" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 20" | 6'-5" | 8'-2" | 9'-10" | 11'-6" | 13'-2" | 16'-7" | 19' - 11" | 23'-3" | | 22" | 6'-4" | 8'-1" | 9'-10" | 11'-6" | 13'-2" | 16'-6" | 19'-11" | 23'-3" | | 24" | 6'-4" | 8'-1" | 9'-9" | 11'-5" | 13'-2" | 16'-6" | 19'-10" | 23'-3" | | 26" | 6'-3" | 8'-0" | 9'-9" | 11'-5" | 13'-1" | 16'-6" | 19'-10" | 23'-2" | | 28" | 6'-3" | 8'-0" | 9'-8" | 11'-5" | 13'-1" | 16'-6" | 19'-10" | 23'-2" | | 30" | 6'-2" | 7'-11 | 9'-8" | 11'-4" | 13'-1" | 16'-5" | 19'-10" | 23'-2" | | 32" | 6'-1" | 7'-10" | 9'-7" | 11'-4" |
13'-0" | 16'-5" | 19'-9" | 23'-2" | | 36" | 5'-11" | 7'-9" | 9'-6" | 11'-3" | 12'-11" | 16'-4" | 19' -9 " | 23'-1" | | 40" | 5'-9" | 7'-7" | 9'-5" | 11'-2" | 12'-10" | 16'-4" | 19'-8" | 23'-1" | | 44" | 5'-6" | 7'-5" | 9'-3" | 11'-0" | 12'-9" | 16'-3" | 19'-7" | 23'-0" | | 48" | 5'-4" | 7'-3" | 9'-2" | 10'-11" | 12'-8" | 16'-2" | 19'-7" | 22'-11" | | 52" | 5'-0" | 7'-1" | 9'-0" | 10'-10" | 12'-7" | 16'-1" | 19'-6" | 22'-11" | | 56" | 4'-9" | 6'-10" | 8'-10" | 10'-8" | 12'-5" | 16'-0" | 19'-5" | 22'-10" | | 60" | 4'-4" | 6'-8" | 8'-7" | 10'-6" | 12'-4" | 15'-10" | 19'-4" | 22'-9" | | 64" | ** | 6'-4" | 8 -5" | 10'-4" | 12'-2" | 15'-9" | 19'-3" | 22'-8" | | 68" | ** | 6'-1" | 8'-2" | 10'-2" | 12'-0" | 15'-8" | 19'-2" | 22'-7" | | 72" | ** | 5'-9" | 8'-0" | 10'-0" | 11'-10" | 15'-6" | 19'-1" | 22'-6" | | 80" | ** | 5'-0" | 7'-5 <mark>"</mark> | 9'-6" | 11'-6" | 15'-3" | 18'-10" | 22'-4" | | 88" | | ** | 6'-9" | 9'-0" | 11'-1" | 14'-11" | 18'-7" | 22'-1" | | 96" | | ** | 6'-0" | 8'-5" | 10'-8" | 14'-7" | 18'-4" | 21'-11" | | 104" | | | ** | 7'-9" | 10'-1" | 14'-2" | 18'-0" | 21'-8" | | 112" | | | ** | 7'-0" | 9'-6" | 13'-9" | 17'-8" | 21'-4" | | 120" | | | | ** | 8'-9" | 13'-4" | 17'-3" | 21'-1" | **INTERPOLATION BELOW THE MINIMUM VALUES SHOWN IS NOT ALLOWED. SEE TABLE 2.7-3 FOR MINIMUM JOIST SPACE FOR DIAGONAL ONLY BRIDGING. ### STANDARD SPECIFICATION #### FOR OPEN WEB STEEL JOISTS, K-SERIES Adopted by the Steel Joist Institute November 4, 1985 Revised to May 18, 2010, Effective December 31, 2010 SECTION 1. #### **SCOPE AND DEFINITIONS** #### 1.1 SCOPE The Standard Specification for Open Web Steel Joists, K-Series, hereafter referred to as the Specification, covers the design, manufacture, application, and erection stability and handling of Open Web Steel Joists K-Series in buildings or other structures, where other structures are defined as those structures designed, manufactured, and erected in a manner similar to buildings. K-Series joists shall be designed using Allowable Stress Design (ASD) or Load and Resistance Factor Design (LRFD) in accordance with this Specification. Steel joists shall be erected in accordance with the Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Code of Federal Regulations 29CFR Part 1926 Safety Standards for Steel Erection, Section 1926.757 Open Web Steel Joists. The KCS joists; Joist Substitutes, K-Series; and Top Chord Extensions and Extended Ends, K-Series are included as part of this Specification. This Specification includes Sections 1 through 6. #### 1.2 DEFINITION The term "Open Web Steel Joists **K**-Series", as used herein, refers to open web, load-carrying members utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength has been attained by cold working, suitable for the direct support of floors and roof slabs or deck. The **K**-Series Joists have been standardized in depths from 10 inches (254 mm) through 30 inches (762 mm), for spans up through 60 feet (18288 mm). The maximum total safe uniformly distributed load-carrying capacity of a **K**-Series Joist is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. The **K**-Series standard joist designations are determined by their nominal depth, followed by the letter "**K**", and then by the chord size designation assigned. The chord size designations range from 01 to 12. Therefore, as a performance based specification, the **K**-Series standard joist designations listed in the following Standard Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: Standard LRFD Load Table Open Web Steel Joists, **K**-Series – U.S. Customary Units Standard ASD Load Table Open Web Steel Joists, **K**-Series – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables Standard LRFD Load Table Open Web Steel Joists, **K**-Series – S.I. Units Standard ASD Load Table Open Web Steel Joists, **K**-Series – S.I. Units Two standard types of **K**-Series Joists are designed and manufactured. These types are underslung (top chord bearing) or square-ended (bottom chord bearing), with parallel chords. A **KCS** Joist shall be designed in accordance with this Specification based on an envelope of moment and shear capacity, rather than uniform load capacity, to support uniform plus concentrated loads or other non-uniform loads. The **KCS** Joists have been standardized in depths from 10 inches (254 mm) through 30 inches (762 mm), for spans up through 60 feet (18288 mm). The maximum total safe uniformly distributed load-carrying capacity of a **KCS** Joist is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. The **KCS** Joists standard designations are determined by their nominal depth, followed by the letters "**KCS**", and then by the chord size designation assigned. The chord size designations range from 1 to 5. Therefore, as a performance based specification, the **KCS** Joists standard designations listed in the following Standard Load Tables shall provide the moment capacity and shear capacity as listed in the appropriate tables: Standard LRFD Load Table for **KCS** Open Web Steel Joists – U.S. Customary Units Standard ASD Load Table for **KCS** Open Web Steel Joists – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables Standard LRFD Load Table for **KCS** Open Web Steel Joists – S.I. Units Standard ASD Load Table for **KCS** Open Web Steel Joists – S.I. Units A Joist Substitute, **K**-Series, shall be designed in accordance with this Specification to support uniform loads when the span is less than 10 feet (3048 mm) where an open web configuration becomes impractical. The Joist Substitutes, **K**-Series have been standardized as 2.5 inch (64 mm) deep sections for spans up through 10'-0" (3048 mm). The maximum total safe uniformly distributed load-carrying capacity of a Joist Substitute is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. The Joist Substitutes, **K**-Series standard designations are determined by their nominal depth, i.e. **2.5**, followed by the letter "**K**" and then by the chord size designation assigned. The chord size designations range from 1 to 3. Therefore, as a performance based specification, the Joist Substitutes, **K**-Series standard designations listed in the following Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: LRFD Simple Span Load Table for 2.5 Inch **K**-Series Joist Substitutes – U.S. Customary Units ASD Simple Span Load Table for 2.5 Inch **K**-Series Joist Substitutes – U.S. Customary Units LRFD Outriggers Load Table for 2.5 Inch K—Series Joist Substitutes – U.S. Customary Units ASD Outriggers Load Table for 2.5 Inch K—Series Joist Substitutes – U.S. Customary Units And the following Load Tables published electronically at www.steeljoist.org/loadtables LRFD Simple Span Load Table for 64 mm K-Series Joist Substitutes – S.I. Units ASD Simple Span Load Table for 64 mm K-Series Joist Substitutes – S.I. Units LRFD Outriggers Load Table for 64 mm K-Series Joist Substitutes – S.I. Units ASD Outriggers Load Table for 64 mm K-Series Joist Substitutes – S.I. Units A Top Chord Extension or Extended End, **K**-Series, shall be a joist accessory that shall be designed in accordance with this Specification to support uniform loads when one or both ends of an underslung joist needs to be cantilevered beyond its bearing seat. The Top Chord Extensions and Extended Ends, **K**-Series have been standardized as an "S" Type (top chord angles extended only) and an "R" Type (top chord and bearing seat angles extended), respectively. The maximum total safe uniformly distributed load-carrying capacity of either an "R" or "S" Type extension is 550 plf (8.02 kN/m) in ASD or 825 plf (12.03 kN/m) in LRFD. Standard designations for the "S" Type range from S1 to S12 for spans from 0'-6" to 4'-6" (152 to 1372 mm). Standard designations for the "R" Type range from R1 to R12 for spans from 0'-6" to 6'-0" (152 to 1829 mm). Therefore, as a performance based specification, the "S" Type Top Chord Extensions and "R" Type Extended Ends listed in the following Standard Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: LRFD Top Chord Extension Load Table (S Type) – U.S. Customary Units ASD Top Chord Extension Load Table (S Type) – U.S. Customary Units LRFD Top Chord Extension Load Table (R Type) – U.S. Customary Units ASD Top Chord Extension Load Table (R Type) – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables LRFD Top Chord Extension Load Table (S Type) – S.I. Units ASD Top Chord Extension Load Table (S Type) – S.I. Units LRFD Top Chord Extension Load Table (R Type) – S.I. Units ASD Top Chord Extension Load Table (R Type) – S.I. Units #### 1.3 STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS The design drawings and specifications shall meet the requirements in the *Code of Standard Practice* for Steel Joists and Joist Girders, except for deviations specifically identified in the design drawings and/or specifications. SECTION 2. # REFERENCED SPECIFICATIONS, CODES AND STANDARDS #### 2.1 REFERENCES American Institute of Steel Construction, Inc. (AISC) ANSI/AISC 360-10 Specification for Structural Steel Buildings American Iron and Steel Institute (AISI) ANSI/AISI S100-2007 North American Specification for Design of Cold-Formed Steel Structural Members ANSI/AISI S100-07/S1-09, Supplement No. 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition ANSI/AISI S100-07/S2-10, Supplement No. 2 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition American Society of Testing and Materials, ASTM International (ASTM) ASTM A6/A6M-09,
Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling ASTM A36/A36M-08, Standard Specification for Carbon Structural Steel ASTM A242/242M-04 (2009), Standard Specification for High-Strength Low-Alloy Structural Steel ASTM A307-07b, Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength ASTM A325/325M-09, Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi [830 MPa] Minimum Tensile Strength ASTM A370-09ae1, Standard Test Methods and Definitions for Mechanical Testing of Steel Products ASTM A500/A500M-07, Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes ASTM A529/A529M-05, Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality ASTM A572/A572M-07, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel ASTM A588/A588M-05, Standard Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmoshperic Corrosion Resistance ASTM A606/A606M-09, Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance ASTM A992/A992M-06a, Standard Specification for Structural Steel Shapes ASTM A1008/A1008M-09, Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable ASTM A1011/A1011M-09a, Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength #### American Welding Society (AWS) AWS A5.1/A5.1M-2004, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding AWS A5.5/A5.5M:2006, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding AWS A5.17/A5.17M-97:R2007, Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.18/A5.18M:2005, Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.20/A5.20M:2005, Specification for Carbon Steel Electrodes for Flux Cored Arc Welding AWS A5.23/A5.23M:2007, Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.28/A5.28M:2005, Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.29/A5.29M:2005, Specification for Low Alloy Steel Electrodes for Flux Cored Arc Welding #### **2.1 OTHER REFERENCES** The following are non-ANSI Standards documents and as such, are provided solely as sources of commentary or additional information related to topics in this Specification. American Society of Civil Engineers (ASCE) SEI/ASCE 7-10 Minimum Design Loads for Buildings and Other Structures Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection, Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. #### Steel Joist Institute (SJI) SJI-COSP-2010, Code of Standard Practice for Steel Joists and Joist Girders Technical Digest No. 3 (2007), Structural Design of Steel Joist Roofs to Resist Ponding Loads Technical Digest No. 5 (1988), Vibration of Steel Joist-Concrete Slab Floors Technical Digest No. 6 (2011), Structural Design of Steel Joist Roofs to Resist Uplift Loads Technical Digest No. 8 (2008), Welding of Open Web Steel Joists and Joist Girders Technical Digest No. 9 (2008), Handling and Erection of Steel Joists and Joist Girders Technical Digest No. 10 (2003), Design of Fire Resistive Assemblies with Steel Joists Technical Digest No. 11 (2007), Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders Technical Digest No. 12 (2007), Evaluation and Modification of Open-web Steel Joists and Joist Girders Steel Structures Painting Council (SSPC) (2000), Steel Structures Painting Manual, Volume 2, Systems and Specifications, Paint Specification No. 15, Steel Joist Shop Primer, May 1, 1999, Pittsburgh, PA. SECTION 3. #### **MATERIALS** #### 3.1 STEEL The steel used in the manufacture of **K**-Series Joists shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength Low-Alloy Structural Steel, ASTM A242/A242M. - Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes, ASTM A500/A500M. - High-Strength Carbon-Manganese Steel of Structural Quality, ASTM A529/A529M. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M - High-Strength Low-Alloy Structural Steel up to 50 ksi [345 MPa] Minimum Yield Point with Atmospheric Corrosion Resistance, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance, ASTM A606/A606M. - Structural Steel Shapes, ASTM A992/A992M. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable, ASTM A1008/A1008M. - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra High Strength, ASTM A1011/A1011M. or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 3.2. #### 3.2 MECHANICAL PROPERTIES Steel used for **K**-Series Joists shall have a minimum yield strength determined in accordance with one of the procedures specified in this section, which is equal to the yield strength* assumed in the design. *The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1 "Yield Point", and in paragraph 13.2 "Yield Strength", of ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, or as specified in paragraph 3.2 of this specification. Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370, and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A500/A500M, A529/A529M, A572/A572M, A588/A588M, A992/A992M whichever specification is applicable, on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606/A606M, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI North American Specifications for the Design of Cold-Formed Steel Structural Members. They shall also indicate compliance with these provisions and with the following additional requirements: - The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 8 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall be not greater than 20 times the least radius of gyration. - d) If any test specimen fails to pass the requirements of the subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. #### 3.3 PAINT The standard shop paint is intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15. - b) Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. SECTION 4. #### DESIGN AND MANUFACTURE #### 4.1 METHOD Joists shall be designed in accordance with this specification as simply-supported, trusses supporting a floor or roof deck so constructed as to brace the top chord of the joists against lateral buckling. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates use the American Institute of Steel Construction, Specification for
Structural Steel Buildings. - b) For members which are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. #### **Design Basis:** Steel joist designs shall be in accordance with the provisions in this Standard Specification using Load and Resistance Factor Design (LRFD) or Allowable Strength Design (ASD) as specified by the **specifying professional** for the project. #### Loads, Forces and Load Combinations: The loads and forces used for the steel joist design shall be calculated by the **specifying professional** in accordance with the applicable building code and specified and provided on the contract drawings. The load combinations shall be specified by the **specifying professional** on the contract drawings in accordance with the applicable building code or, in the absence of a building code, the load combinations shall be those stipulated in SEI/ASCE 7. For LRFD designs, the load combinations in SEI/ASCE 7, Section 2.3 apply. For ASD designs, the load combinations in SEI/ASCE 7, Section 2.4 apply. #### 4.2 DESIGN AND ALLOWABLE STRESSES #### Design Using Load and Resistance Factor Design (LRFD) Joists shall have their components so proportioned that the required stresses, fur shall not exceed ϕF_n where f_u = required stress ksi (MPa) F_n = nominal stress ksi (MPa) Φ = resistance factor ϕ = resistance factor ϕF_n = design stress #### Design Using Allowable Strength Design (ASD) Joists shall have their components so proportioned that the required stresses, f, shall not exceed F_n/Ω where f = required stress ksi (MPa) $F_n = nominal stress$ ksi (MPa) Ω = safety factor $F_n/Ω$ = allowable stress #### Stresses: **For Chords**: The calculation of design or allowable stress shall be based on a yield strength, F_y, of the material used in manufacturing equal to 50 ksi (345 MPa). **For all other joist elements**: The calculation of design or allowable stress shall be based on a yield strength, F_y, of the material used in manufacturing, but shall not be less than 36 ksi (250 MPa) or greater than 50 ksi (345 MPa). Note: Yield strengths greater than 50 ksi shall not be used for the design of any joist members. (a) Tension: $\phi_t = 0.90$ (LRFD), $\Omega_t = 1.67$ (ASD) Design Stress = $$0.9F_V$$ (LRFD) (4.2-1) Allowable Stress = $$0.6F_{V}$$ (ASD) (4.2-2) (b) Compression: $\phi_c = 0.90$ (LRFD), $\Omega_c = 1.67$ (ASD) Design Stress = $$0.9F_{cr}$$ (LRFD) (4.2-3) Allowable Stress = $$0.6F_{cr}$$ (ASD) (4.2-4) For members with $$\frac{k\ell}{r} \le 4.71 \sqrt{\frac{E}{QF_v}}$$ $$F_{cr} = Q \left[0.658^{\left(QF_{y}/F_{e}\right)} \right] F_{y}$$ (4.2-5) For members with $$\frac{k\ell/r}{ > 4.71 \sqrt{E/QF_y}}$$ $$F_{cr} = 0.877F_e$$ (4.2-6) Where: F_e = Elastic buckling stress determined in accordance with Equation 4.2-7 $$\mathsf{F}_{\mathsf{e}} = \frac{\pi^2 \,\mathsf{E}}{\left(\frac{\mathsf{k}\ell}{\mathsf{r}}\right)^2} \tag{4.2-7}$$ In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for a compression or tension web member, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). For hot-rolled sections and cold formed angles, Q is the full reduction factor for slender compression members as defined in the AISC *Specification for Structural Steel Buildings* except that when the first primary compression web member is a crimped-end angle member, whether hot-rolled or cold formed: $$Q = [5.25/(w/t)] + t \le 1.0$$ (4.2-8) Where: w = angle leg length, inches t = angle leg thickness, inches or, $$Q = [5.25/(w/t)] + (t/25.4) \le 1.0 \tag{4.2-9}$$ Where: w = angle leg length, millimeters t = angle leg thickness, millimeters For all other cold-formed sections the method of calculating the nominal compression strength is given in the AISI, North American Specification for the Design of Cold-Formed Steel Structural Members. #### (c) Bending: $\phi_b = 0.90 \text{ (LRFD)}, \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_n = F_v$ Design Stress = $$\phi_b F_n = 0.9 F_y$$ (LRFD) (4.2-10) Allowable Stress = $$F_n/\Omega_b = 0.6F_y$$ (ASD) (4.2-11) For web members of solid round cross section: $F_n = 1.6 F_v$ Design Stress = $$\phi_b F_n = 1.45 F_v$$ (LRFD) (4.2-12) Allowable Stress = $$F_n/\Omega_b = 0.95F_v$$ (ASD) (4.2-13) For bearing plates used in joist seats: $F_n = 1.5 F_v$ Design Stress = $$\phi_b F_n = 1.35 F_y$$ (LRFD) (4.2-14) Allowable Stress = $$F_n/\Omega_b$$ = 0.90 F_v (ASD) (4.2-15) #### (d) Weld Strength: Shear at throat of fillet welds, flare bevel groove welds, partial joint penetration groove welds, and plug/slot welds: Nominal Shear Stress = $$F_{nw}$$ = 0.6 F_{exx} (4.2-16) **LRFD**: $\phi_{w} = 0.75$ Design Shear Strength = $$\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A_w$$ (4.2-17) **ASD**: $\Omega_{\rm W} = 2.0$ Allowable Shear Strength = $$R_0/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx}A_w$$ (4.2-18) Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations $F_{exx} = 70$ ksi (483 MPa) Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations F_{exx} = 60 ksi (414 MPa) #### A_w = effective throat area, where: For fillet welds, A_w = effective throat area, (other design methods demonstrated to provide sufficient strength by testing shall be permitted to be used); For flare bevel groove welds, the effective weld area is based on a weld throat width, T, where: $$T$$ (inches) = 0.12D + 0.11 (4.2-19) Where: D = web diameter, inches or, $$T \text{ (mm)} = 0.12D + 2.8$$ (4.2-20) Where: D = web diameter, mm For plug/slot welds, A_w = cross-sectional area of the hole or slot in the plane of the faying surface provided that the hole or slot meets the requirements of the American Institute of Steel Construction *Specification for Structural Steel Buildings* (and as described in SJI Technical Digest No. 8, "Welding of Open-Web Steel Joists and Joist Girders"). Strength of resistance welds and complete-joint-penetration groove or butt welds in tension or compression (only when the stress is normal to the weld axis) is equal to the base metal strength: $$\phi_t = \phi_c = 0.90 \text{ (LRFD)}$$ $\Omega_t = \Omega_c = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_v$$ (LRFD) (4.2-21) Allowable Stress = $$0.6F_v$$ (ASD) (4.2-22) #### 4.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratios, 1.0 ℓ /r and 1.0 ℓ s /r of members as a whole or any component part shall not exceed the values given in Table 4.3-1, Parts A. The effective slenderness ratio, $k\ell lr$ to be used in calculating the nominal stresses, F_{cr} and F'_{e} , is the largest value as determined from Table 4.3-1, Parts B and C. In compression members when fillers or ties are used, they shall be spaced so that the ℓ_s/r_z ratio of each component does not exceed the governing ℓ/r ratio of the member as a whole. The terms used in Table 4.3-1 are defined as follows: - ℓ = length center-to-center of panel points, except ℓ = 36 inches (914 millimeters) for calculating $\ell l r_y$ of top chord member, in. (mm) or the appropriate length for a compression or tension web member, in. (mm). - ℓ_s = maximum length center-to-center between panel point and filler (tie), or between adjacent fillers (ties), in. (mm). - r_x = member radius of gyration in the plane of the joist, in. (mm). - r_y = member radius of gyration out of the plane of the joist, in. (mm). - r_z = least radius of gyration of a member component, in. (mm). Compression web members are those web members subject to compressive axial loads under gravity loading. Tension web members are those web members subject to tension axial loads under gravity loading, and which may be subject to compressive axial loads under alternate loading conditions, such as net uplift. For top chords, the end panel(s) are the panels between the bearing seat and the first primary interior panel point comprised of at least two intersecting web members. # TABLE 4.3-1 MAXIMUM AND EFFECTIVE SLENDERNESS RATIOS | Г | | 1 | 1 | 1 | I | |----
---|------------------------|------------------|-------------------|----------------------| | | Description | kℓ/r _x | $K\ell/r_y$ | kℓ/r _z | $k\ell_s/r_z$ | | 1 | TOP CHORD INTERIOR PANELS | | | | | | | A. The slenderness ratios, 1.0ℓ/r and 1.0ℓ_s/r, or component part shall not exceed 90. B. The effective slenderness ratio, kℓ/r, to determine the slenderness ratio. | | | | | | | With fillers or ties Without fillers or ties Single component members C. For bending, the effective slenderness ratio | 1.0

1.0 | 0.94

0.94 | 1.0 | 1.0

k is: | | | | 1.0 | | | | | П | TOP CHORD END PANELS, ALL BOTTOM CHO | | LS | • | | | | A. The slenderness ratios, 1.0ℓ/r and 1.0ℓ_s/r, of component part shall not exceed 120 for To B. B. The effective slenderness ratio, kℓ/r, to determine the slenderness ratio. | op Chords | , or 240 fc | or Bottom | | | | With fillers or ties Without fillers or ties Single component members C. For bending, the effective slenderness ration | 1.0

1.0 | 0.94

0.94 | 1.0
 | 1.0

k is: | | | r or something, and one of the | 1.0 | | | | | Ш | TENSION WEB MEMBERS | Ť | | | | | | A. The slenderness ratios, 1.0ℓ/r and 1.0ℓ_s/r, of component part shall not exceed 240. B. For end web members subject to compress kℓ/r, to determine F_{cr} where k is: | | | | | | | With fillers or ties Without fillers or ties Single component members | 1.0

0.8 | 1.0

0.8 | 1.0
 | 1.0
 | | IV | COMPRESSION WEB MEMBERS | | | | | | | A. The slenderness ratios, 1.0 ℓ /r and 1.0 ℓ s/r, component part shall not exceed 200. | of membe | rs as a wh | nole or an | У | | | B. The effective slenderness ratio, $k\ell/r$, to determine the state of | ermine F _{cr} | where k i | s: | | | | With fillers or ties Without fillers or ties Single component members | 1.0

1.0 | 1.0

1.0 | 1.0
 | 1.0

 | | | | | | | | #### 4.4 MEMBERS #### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the top chord about its vertical axis shall not be less than: $$r_{y} \ge \ell_{br} / \left(124 + 0.67 \, d_{j} + 28 \, \frac{d_{j}}{L}\right)$$, in. (4.4-1a) $$r_{y} \ge \ell_{br} / \left(124 + 0.026 \, d_{j} + 0.34 \, \frac{d_{j}}{L} \right), \, mm$$ (4.4-1b) or, $$r_{v} \ge \ell_{br}/170 \tag{4.4-2}$$ Where: d_j is the steel joist depth, in. (mm) L is the design length for the joist, ft. (m) r_v is the out-of-plane radius of gyration of the top chord, in. (mm) $\ell_{\rm br}$ is the spacing in inches (millimeters) between lines of bridging as specified in Section 5.4(c). The top chord shall be considered as stayed laterally by the floor slab or roof deck when attachments are in accordance with the requirements of Section 5.8(e) of these specifications. The top chord shall be designed for only axial compressive stress when the panel length, ℓ , does not exceed 24 inches (609 mm). When the panel length exceeds 24 inches (609 mm), the top chord shall be designed as a continuous member subject to combined axial and bending stresses and shall be so proportioned that: #### For **LRFD**: at the panel point: $$f_{au} + f_{bu} \le 0.9 F_{y} \tag{4.4-3}$$ at the mid panel: for, $$\frac{f_{au}}{\phi_c F_{cr}} \ge 0.2$$ $$\frac{f_{au}}{\phi_c F_{cr}} + \frac{8}{9} \left[\frac{C_m f_{bu}}{\left[1 - \left(\frac{f_{au}}{\phi_c F'_e} \right) \right] Q \phi_b F_y} \right] \le 1.0$$ (4.4-4) $$\text{for, } \frac{f_{au}}{\phi_c F_{cr}} < 0.2 \,,$$ $$\left(\frac{f_{au}}{2\phi_{c}F_{cr}}\right) + \left[\frac{C_{m}f_{bu}}{\left[1 - \left(\frac{f_{au}}{\phi_{c}F'_{e}}\right)\right]Q\phi_{b}F_{y}}\right] \le 1.0$$ (4.4-5) $f_{au} = P_u/A = Required compressive stress, ksi (MPa)$ P_u = Required axial strength using LRFD load combinations, kips (N) $f_{bu} = M_{U}/S = Required bending stress at the location under consideration, ksi (MPa)$ M_u = Required flexural strength using LRFD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.³ (mm³) F_{cr} = Nominal axial compressive stress in ksi (MPa) based on ℓ/r as defined in Section 4.2(b), $C_m = 1 - 0.3 f_{au}/\phi F'_e$ for end panels $C_m = 1 - 0.4 f_{au}/\phi F'_e$ for interior panels F_v = Specified minimum yield strength, ksi (MPa) $$F'_{e} = \frac{\pi^2 E}{(K \ell / r_x)^2}$$, ksi (MPa) Where ℓ is the panel length, in inches (millimeters), as defined in Section 4.2(b) and r_x is the radius of gyration about the axis of bending. Q = Form factor defined in Section 4.2(b) A = Area of the top chord, in.² (mm²) #### For ASD: at the panel point: $$f_a + f_b \le 0.6F_y \tag{4.4-6}$$ at the mid panel: for, $$\frac{f_a}{F_a} \ge 0.2$$, $$\frac{f_{a}}{F_{a}} + \frac{8}{9} \left[\frac{C_{m}f_{b}}{1 - \left(\frac{1.67f_{a}}{F_{e}'}\right) \right] QF_{b}} \le 1.0$$ (4.4-7) for $$\frac{f_a}{F_a}$$ < 0.2, $$\left(\frac{f_a}{2F_a}\right) + \left[\frac{C_m f_b}{\left[1 - \left(\frac{1.67 f_a}{F'_e}\right)\right] Q F_b}\right] \le 1.0$$ (4.4-8) f_a = P/A required compressive stress, ksi (MPa) P = Required axial strength using ASD load combinations, kips (N) f_b = M/S = required bending stress at the location under consideration, ksi (MPa) M = Required flexural strength using ASD load combinations, k-in (N-mm) F_a = Allowable axial compressive stress based on ℓ/r as defined in Section 4.2(b), ksi (MPa) F_b = Allowable bending stress; 0.6F_v, ksi (MPa) $C_m = 1 - 0.50 f_a/F'_e$ for end panels $C_m = 1 - 0.67 f_a/F'_e$ for interior panels The top chord and bottom chord shall be designed such that at each joint: $$f_{\text{vmod}} \le \phi_{\text{v}} f_{\text{n}}$$ (LRFD, $\phi = 1.00$) (4.4-9) $$f_{\text{vmod}} \le f_{\text{n}}/\Omega_{\text{v}}$$ (ASD, $\Omega = 1.50$) (4.4-10) Where: f_n = nominal shear stress = 0.6 F_y , ksi (MPa) f_t = axial stress = P/A, ksi (MPa) f_v = shear stress = V/bt, ksi (MPa) f_{vmod} = modified shear stress = $(\frac{1}{2})(f_t^2 + 4f_v^2)^{1/2}$ b = length of vertical part(s) of cross section, in. (mm) t = thickness of vertical part(s) of cross section, in. (mm) It shall not be necessary to design the top chord and bottom chord for the modified shear stress when a round bar web member is continuous through a joint. The minimum required shear Section 4.4(b) (25 percent of the end reaction) shall not be required when evaluating Equation 4.4-9 or 4.4-10. KCS Joist chords shall be designed for a flat positive bending moment envelope where the moment capacity is constant at all interior panels. The top chord end panel(s) is designed for an axial load based on the force in the first tension web resulting from the specified shear. A uniform load of 550 plf (8020 N/m) in ASD or 825 plf (12030 N/m) in LRFD shall be used to check bending in the end panel(s). #### (b) Web The vertical shears to be used in the design of the web members shall be determined from full uniform loading, but such vertical shears shall be not less than 25 percent of the end reaction. Due consideration shall be given to the effect of eccentricity. The effect of combined axial compression and bending shall be investigated using the provisions of Section 4.4(a), letting $C_m = 0.4$ when bending due to eccentricity produces reversed curvature. Interior vertical web members used in modified Warren type web systems shall be designed to resist the gravity loads supported by the member plus an additional axial load of ½ of 1.0 percent of the top chord axial force. KCS Joist web forces shall be determined based on a flat shear envelope. All webs shall be designed for a vertical shear equal to the specified shear capacity. In addition, all webs shall be designed for 100 percent stress reversal except for the first tension web which will remain in tension under all simple span gravity loads. ####
(c) Joist Extensions Joist extensions are defined as one of three types, top chord extensions (TCX), extended ends, or full depth cantilevers. Design criteria for joist extensions shall be specified using one of the following methods: - (1) A Top chord extension (TCX), extended end, or full depth cantilevered end shall be designed for the load from the Standard Load Tables based on the design length and designation of the specified joist. In the absence of other design information, the joist manufacturer shall design the joist extension for this loading as a default. - (2) A loading diagram shall be provided for the top chord extension, extended end, or full depth cantilevered end. The diagram shall include the magnitude and location of the loads to be supported, as well as the appropriate load combinations. - (3) Joist extensions shall be specified using extension designations found in the Top Chord Extension Load Table (S Type) for TCXs or the Top Chord Extension Load Table (R Type) for extended ends. Any deflection requirements or limits due to the accompanying loads and load combinations on the joist extension shall be provided by the **specifying professional**, regardless of the method used to specify the extension. Unless otherwise specified, the joist manufacturer shall check the extension for the specified deflection limit under uniform live load acting simultaneously on both the joist base span and the extension. The joist manufacturer shall consider the effects of joist extension loading on the base span of the joist. This includes carrying the design bending moment due to the loading on the extension into the top chord end panel(s), and the effect on the overall joist chord and web axial forces. In the case of a K-Series Standard Type 'R' Extended End or 'S' TCX, the design bending moment is defined as the tabulated extension section modulus (S) multiplied by the appropriate allowable (ASD) or design (LRFD) flexural stress. Bracing of joist extensions shall be clearly indicated on the structural drawings. #### 4.5 CONNECTIONS #### (a) Methods Joist connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. - (1) Welded Connections - a) Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between weld and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 mm) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 mm) in any 1 inch (25 mm) of design weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. - (2) Welded Connections for Crimped-End Angle Web Members The connection of each end of a crimped angle web member to each side of the chord shall consist of a weld group made of more than a single line of weld. The design weld length shall include, at minimum, an end return of two times the nominal weld size. #### (3) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and for weld sampling and testing. (See Technical Digest 8 - Welding of Open Web Steel Joists and Joist Girders.) (4) Weld Inspection by Outside Agencies (See Section 5.12 of this specification) The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 4.5(a)(1) above. Ultrasonic, X-Ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. #### (b) Strength - (1) <u>Joint Connections</u> Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. - (2) Shop Splices Shop splices shall be permitted to occur at any point in chord or web members. Splices shall be designed for the member force, but not less than 50 percent of the member strength. All component parts comprising the cross section of the chord or web member (including reinforcing plates, rods, etc.) at the point of the splice, shall develop an ultimate tensile force of at least 1.2 times the product of the yield strength and the full design area of the chord or web. The "full design area" is the minimum required area such that the required stress will be less than the design (LRFD) or allowable (ASD) stress. #### (c) Eccentricity Members connected at a joint shall have their centroidal axes meet at a point whenever possible. Between joist ends where the eccentricity of a web member is less than 3/4 of the over-all dimension, measured in the plane of the web, of the largest member connected, the additional bending stress from this eccentricity shall be permitted to be neglected in the joist design. Otherwise, due consideration shall be given to the effect of eccentricity. The eccentricity of any web member shall be the perpendicular distance from the centroidal axis of that web member to the point on the centroidal axis of the chord which is vertically above or below the intersection of the centroidal axis of the web member(s) forming the joint. Joist ends shall be proportioned to resist bending produced by eccentricity at the support. #### 4.6 CAMBER Joists shall have approximate camber in accordance with the following: **TABLE 4.6-1** | Top Chord Length | | Approximate Camber | | |------------------|------------|--------------------|---------| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | 50'-0" | (15240 mm) | 1" | (25 mm) | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | The **specifying professional** shall give consideration to coordinating joist camber with adjacent framing. #### 4.7 VERIFICATION OF DESIGN AND MANUFACTURE #### (a) Design Calculations Companies manufacturing **K**-Series Joists shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. Design data shall be submitted in detail and in the format specified by the Institute. #### (b) Tests of Chord and Web Members Each manufacturer shall, at the time of design review by the Steel Joist Institute, verify by tests that the design, in accordance with Sections 4.1 through 4.5 of this specification, will provide the theoretical strength of critical members. Such tests shall be evaluated considering the actual yield strength of the members of the test joists. Material tests for determining mechanical properties of component members shall be conducted. #### (c) Tests of Joints and Connections Each manufacturer shall, at the time of design review by the Steel Joist Institute, verify by shear tests on representative joints of typical joists that connections will meet the provision of Section 4.5(b). Chord and web members shall be permitted to be reinforced for such tests. #### (d) In-Plant Inspections Each manufacturer shall verify their ability to manufacture **K**-Series Joists through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel Joist Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The plant inspections are not a guarantee of the quality of any specific joists; this responsibility lies fully and solely with the individual manufacturer. SECTION 5. #### **APPLICATION** #### 5.1 USAGE This specification shall apply to any type of structure where floors and roofs are to be supported directly by steel joists installed as hereinafter specified. Where joists are used other than on simple spans under uniformly distributed loading as prescribed in Section 4.1, they shall be investigated and modified when necessary to limit the required stresses to those listed in Section 4.2. When a rigid connection of the bottom chord is to be made to a column or other structural support, the joist is then no longer simply supported, and the system shall be investigated for continuous frame action by the **specifying professional**. The magnitude and location of all loads and forces shall be provided on the structural drawings. The **specifying professional** shall design the supporting structure, including the design of columns, connections, and moment plates*. This design shall account for the stresses caused by lateral forces and the stresses due to connecting the bottom chord to the column or other structural support. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the **specifying professional**. The moment plates shall be furnished by other than the joist manufacturer. *For further reference, refer to Steel Joist Institute Technical Digest 11, "Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders." #### **5.2 SPAN** The span of a joist shall not exceed 24 times its depth. #### 5.3 END SUPPORTS #### (a) Masonry and Concrete A **K**-Series Joist end supported by masonry or concrete shall bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical or lateral forces shall be taken by the **specifying professional** in the design of the steel bearing plate and the masonry or concrete. The ends of **K**-Series Joists shall extend a distance of not less than 4 inches (102 mm) over the masonry or concrete support unless it is deemed necessary to bear less than 4 inches (102 mm) over the support.
Special consideration shall then be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. **K**-Series Joists shall be anchored to the steel bearing plate and shall bear a minimum of 2 1/2 inches (64 mm) on the plate. The steel bearing plate shall be located not more than 1/2 inch (13 mm) from the face of the wall, otherwise special consideration shall then be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. When the **specifying professional** requires the joist reaction to occur at or near the centerline of the wall or other support, then a note shall be placed on the contract drawings specifying this requirement and the specified bearing seat depth shall be increased accordingly. If the joist reaction is to occur more than 2 1/2 inches (64 mm) from the face of the wall or other support, the minimum seat depth shall be 2 1/2 inches (64 mm). The steel bearing plate shall not be less than 6 inches (152 mm) wide perpendicular to the length of the joist. The plate is to be designed by the **specifying professional** and shall be furnished by other than the joist manufacturer. #### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the **specifying professional** in the design of the steel support. The ends of **K**-Series Joists shall extend a distance of not less than 2 ½ inches (64 millimeters) over the steel supports. #### 5.4 BRIDGING Top and bottom chord bridging is required and shall consist of one or both of the following types. #### (a) Horizontal Horizontal bridging shall consist of continuous horizontal steel members. The ratio of unbraced length to least radius of gyration, ℓ/r , of the bridging member shall not exceed 300, where ℓ is the distance in inches (mm) between attachments, and r is the least radius of gyration of the bridging member. #### (b) Diagonal Diagonal bridging shall consist of cross-bracing with a ℓ/r ratio of not more than 200, where ℓ is the distance in inches (millimeters) between connections and r is the least radius of gyration of the bracing member. Where cross-bracing members are connected at their point of intersection, the ℓ distance shall be taken as the distance in inches (millimeters) between connections at the point of intersection of the bracing members and the connections to the chord of the joists. #### (c) Quantity and Spacing Bridging shall be properly spaced and anchored to support the decking and the employees prior to the attachment of the deck to the top chord. The maximum spacing of lines of bridging, ℓ_{brmax} shall be the lesser of, $$\ell_{\text{brmax}} = \left(124 + 0.67 \, d_j + 28 \frac{d_j}{L}\right) r_y$$, in. (5.4-1a) $$\ell_{brmax} = \left(124 + 0.026 \,d_j + 0.34 \,\frac{d_j}{L}\right) r_y, \,mm \tag{5.4-1b}$$ or, $$\ell_{\text{brmax}} = 170 \, \text{r}_{\text{y}} \tag{5.4-2}$$ Where: d_i is the steel joist depth, in. (mm) L is the Joist Span length, ft. (m) r_v is the out-of-plane radius of gyration of the top chord, in. (mm) The number of rows of top chord bridging shall not be less than as shown in Bridging Tables 5.4-1 and 5.4-2 and the spacing shall meet the requirements of Equations 5.4-1 and 5.4-2. The number of rows of bottom chord bridging, including bridging required per Section 5.11, shall not be less than the number of top chord rows. Rows of bottom chord bridging are permitted to be spaced independently of rows of top chord bridging. The spacing of rows of bottom chord bridging shall meet the slenderness requirement of Section 4.3 and any specified strength requirements. #### **TABLE 5.4-1** #### NUMBER OF ROWS OF TOP CHORD BRIDGING** Refer to the K-Series Load Table and Specification Section 6 for required bolted diagonal bridging. Distances are Joist Span lengths in feet – See "Definition of Span" preceding Load Tables. | Section | Joist | One | Two | Three | Four | |---------|------------|------------|-----------------|-----------------|-----------------| | Number* | Depth | Row | Rows | Rows | Rows | | #1 | All | Up thru 17 | Over 17 thru 26 | Over 26 thru 28 | | | #2 | All | Up thru 21 | Over 21 thru 30 | Over 30 thru 32 | | | #3 | All | Up thru 18 | Over 18 thru 26 | Over 26 thru 40 | | | #4 | All | Up thru 20 | Over 20 thru 30 | Over 30 thru 41 | Over 41 thru 48 | | #5 | 12K to 24K | Up thru 20 | Over 20 thru 30 | Over 30 thru 42 | Over 42 thru 48 | | | 26K | Up thru 28 | Over 28 thru 41 | Over 41 thru 52 | | | #6 | 14K to 24K | Up thru 20 | Over 20 thru 31 | Over 31 thru 42 | Over 42 thru 48 | | | 26K & 28K | UP thru 28 | Over 28 thru 41 | Over 41 thru 54 | Over 54 thru 56 | | #7 | 16K to 24K | Up thru 23 | Over 23 thru 34 | Over 34 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 44 | Over 44 thru 60 | | | #8 | 24K | Up thru 25 | Over 25 thru 39 | Over 39 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 44 | Over 44 thru 60 | | | #9 | 16K to 24K | Up thru 22 | Over 22 thru 34 | Over 34 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 44 | Over 44 thru 60 | | | #10 | 18K to 24K | Up thru 22 | Over 22 thru 38 | Over 38 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 48 | Over 48 thru 60 | | | #11 | 22K | Up thru 24 | Over 24 thru 39 | Over 39 thru 44 | | | | 30K | Up thru 34 | Over 34 thru 49 | Over 49 thru 60 | | | #12 | 24K | Up thru 25 | Over 25 thru 43 | Over 43 thru 48 | | | | 26K to 30K | Up thru 29 | Over 29 thru 47 | Over 47 thru 60 | | ^{*}Last digit(s) of joist designation shown in Load Table **See Section 5.11 for additional bridging required for uplift design. #### **TABLE 5.4-2** #### METRIC UNITS #### NUMBER OF ROWS OF TOP CHORD BRIDGING** Refer to the K-Series Load Table and Specification Section 6 for required bolted diagonal bridging. Distances are Joist Span lengths in mm – See "Definition of Span" preceding Load Tables. | Section
Number* | Joist | One | Two | Three | Four | |--------------------|------------|---------------|-----------------------|-----------------------|-----------------------| | | Depth | Row | Rows | Rows | Rows | | #1 | All | Up thru 5182 | Over 5182 thru 7925 | Over 7925 thru 8534 | | | #2 | All | Up thru 6401 | Over 6401 thru 9144 | Over 9144 thru 9754 | | | #3 | All | Up thru 5486 | Over 5486 thru 7925 | Over 7925 thru 12192 | | | #4 | All | Up thru 6096 | Over 6096 thru 9144 | Over 9144 thru 12497 | Over 12497 thru 14630 | | #5 | 12K to 24K | Up thru 6096 | Over 6096 thru 9144 | Over 9144 thru 12802 | Over 12802 thru 14630 | | | 26K | Up thru 8534 | Over 8534 thru 12497 | Over 12497 thru 15850 | | | #6 | 14K to 24K | Up thru 6096 | Over 6096 thru 9449 | Over 9449 thru 12802 | Over 12802 thru 14630 | | | 26K & 28K | Up thru 8534 | Over 8534 thru 12497 | Over 12497 thru 16459 | Over 16459 thru 17069 | | #7 | 16K to 24K | Up thru 7010 | Over 7010 thru 10363 | Over 10363 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 13411 | Over 13411 thru 18288 | * | | #8 | 24K | Up thru 7620 | Over 7620 thru 11887 | Over 11887 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 13411 | Over 13411 thru 18288 | | | #9 | 16K to 24K | Up thru 6706 | Over 6706 thru 10363 | Over 10363 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 13411 | Over 13411 thru 18288 | | | #10 | 18K to 24K | Up thru 6706 | Over 6706 thru 11582 | Over 11582 thru 14630 | | | | 26K to 30K | Up thru 8839 | Over 8839 thru 14630 | Over 14630 thru 18288 | | | #11 | 22K | Up thru 7315 | Over 7315 thru 11887 | Over 11887 thru 13411 | | | | 30K | Up thru 10363 | Over 10363 thru 14935 | Over 14935 thru 18288 | | | #12 | 24K | Up thru 7620 | Over 7620 thru 13106 | Over 13106 thru 14630 | | | | 26K to 30K | UP thru 8839 | Over 8839 thru 14326 | Over 14326 thru 18288 | | ^{*}Last digit(s) of joist designation shown in Load Table **See Section 5.11 for additional bridging required for uplift design. #### (d) Sizing of Bridging Horizontal and diagonal bridging shall be capable of resisting the nominal unfactored horizontal compressive force, P_{br} given in Equation 5.4-3. $$P_{br} = 0.0025 \text{ n A}_{t} F_{construction}, \text{ lbs (N)}$$ (5.4-3) Where: n = 8 for horizontal bridging n = 2 for diagonal bridging A_t = cross sectional area of joist top chord, in.² (mm²) F_{construction} = assumed ultimate stress in top chord to resist construction loads $$\mathsf{F}_{\mathsf{construction}} = \left(\frac{\pi^2 \mathsf{E}}{\left(\frac{0.9 \,\ell_{\mathsf{brmax}}}{\mathsf{r}_{\mathsf{y}}}\right)^2}\right) \ge 12.2 \,\mathsf{ksi} \tag{5.4-4a}$$ $$F_{\text{construction}} = \left(\frac{\pi^2 E}{\left(\frac{0.9 \ell_{\text{brmax}}}{r_{\text{y}}}\right)^2}\right) \ge 84.1 \text{MPa}$$ (5.4-4b) Where: E = Modulus of Elasticity of steel = 29,000 ksi (200,000 MPa) and $\frac{\ell_{\text{brmax}}}{r_{\text{y}}}$ is determined from Equations 5.4-1a, 5.4-1b or 5.4-2 The bridging nominal unfactored horizontal compressive forces, P_{br}, are summarized in Table 5.4-3. **TABLE 5.4-3** | *Section | Hor | izontal | D | iagonal | |-------------------------|-----------------|----------------|-------------|-----------------------| | Number | P _{br} | (n=8) | F | P _{br} (n=2) | | | lbs | (N) | lbs | (N) | | #1 thru #8 | 340 | (1512) | 85 | (378) | | #9, #10 | 450 | (2002) | 113 | (503) | | #11, # <mark>1</mark> 2 | 560 | (2491) | 140 | (623) | | *Last digit(s) | of joist des | ignation showr | n in Load 1 | able | #### (e) Connections Attachments to the joist chords shall be made by welding or mechanical means and shall be capable of resisting the nominal (unfactored) horizontal force, P_{br}, of Equation 5.4-3, but not less 700 pounds (3114 N). #### (f) Bottom Chord Bearing Joists Where bottom chord bearing joists are utilized, a row of diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. #### 5.5
INSTALLATION OF BRIDGING Bridging shall support the top and bottom chords against lateral movement during the construction period and shall hold the steel joists in the approximate position as shown on the joist placement plans. The ends of all bridging lines terminating at walls or beams shall be anchored thereto. #### **5.6 BEARING SEAT ATTACHMENTS** #### (a) Masonry and Concrete Ends of **K-**Series Joists resting on steel bearing plates on masonry or structural concrete shall be attached thereto with a minimum of two 1/8 inch (3 mm) fillet welds 2 inches (51 mm) long, or with two 1/2 inch (13 mm) ASTM - A307 bolts, or the equivalent. #### (b) Steel Ends of **K-**Series Joists resting on steel supports shall be attached thereto with a minimum of two 1/8 inch (3 mm) fillet welds 2 inches (51 mm) long, or with two 1/2 inch (13 mm) ASTM – A307 bolts, or the equivalent. When **K-**Series Joists are used to provide lateral stability to the supporting member, the final connection shall be made by welding or as designated by the **specifying professional**. #### (c) Uplift Where uplift forces are a design consideration, roof joists shall be anchored to resist such forces (Refer to Section 5.11 Uplift). #### 5.7 JOIST SPACING Joists shall be spaced so that the loading on each joist does not exceed the design load (LRFD or ASD) for the particular joist designation and span as shown in the applicable load tables. #### 5.8 FLOOR AND ROOF DECKS #### (a) Material Floor and roof decks shall be permitted to consist of cast-in-place or pre-cast concrete or gypsum, formed steel, wood, or other suitable material capable of supporting the required load at the specified joist spacing. #### (b) Thickness Cast-in-place slabs shall be not less than 2 inches (51 mm) thick. #### (c) Centering Centering for cast-in-place slabs shall be permitted to be ribbed metal lath, corrugated steel sheets, paper-backed welded wire fabric, removable centering or any other suitable material capable of supporting the slab at the designated joist spacing. Centering shall not cause lateral displacement or damage to the top chord of joists during installation or removal of the centering or placing of the concrete. #### (d) Bearing Slabs or decks shall bear uniformly along the top chords of the joists. #### (e) Attachments The spacing for slab or deck attachments along the joist top chord shall not exceed 36 inches (914 mm), and shall be capable of resisting a nominal (unfactored) lateral force of not less than 300 pounds (1335 N), i.e., 100 plf (1.46 kN/m). #### (f) Wood Nailers Where wood nailers are used, such nailers in conjunction with deck or slab shall be attached to the top chords of the joists in conformance with Section 5.8(e). #### (g) Joist With Standing Seam Roofing or Laterally Unbraced Top Chords When the roof system does not provide lateral stability for the joists in accordance with Section 5.8 (e), (i.e. as may be the case with standing seam roofs or extended skylights and openings) sufficient stability shall be provided to brace the joists laterally under the full design load. The compression chord shall resist the chord axial design force in the plane of the joist (i.e., x-x axis buckling) and out of the plane of the joist (i.e., y-y axis buckling). In any case where the attachment requirement of Section 5.8(e) is not achieved, out-of-plane strength shall be achieved by adjusting the bridging spacing and/or increasing the compression chord area and the y-axis radius of gyration. The effective slenderness ratio in the y-direction equals 0.94 L/r_y; where L is the bridging spacing in inches (millimeters). The maximum bridging spacing shall not exceed that specified in Section 5.4(c). Horizontal bridging members attached to the compression chords and their anchorages shall be designed for a compressive axial force of $0.001nP + 0.004 P\sqrt{n} \ge 0.0025nP$, where n is the number of joists between end anchors and P is the chord design force in kips (Newtons). The attachment force between the horizontal bridging member and the compression chord shall be 0.01P. Horizontal bridging attached to the tension chords shall be proportioned so that the slenderness ratio between attachments does not exceed 300. Diagonal bridging shall be proportioned so that the slenderness ratio between attachments does not exceed 200. #### 5.9 DEFLECTION The deflection due to the design nominal live load shall not exceed the following: Floors: 1/360 of span. **Roofs:** 1/360 of span where a plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying professional shall give consideration to the effects of deflection and vibration* in the selection of joists. *For further reference, refer to Steel Joist Institute Technical Digest 5, Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. #### 5.10 PONDING The ponding investigation shall be performed by the specifying professional. *For further reference, refer to Steel Joist Institute Technical Digest 3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and the AISC Specification for Structural Steel Buildings. #### **5.11 UPLIFT** Where uplift forces due to wind are a design requirement, these forces shall be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract documents shall indicate if the net uplift is based upon LRFD or ASD. When these forces are specified, they shall be considered in the design of joists and/or bridging. A single line of **bottom chord** bridging shall be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration. *For further reference, refer to Steel Joist Institute Technical Digest 6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads". #### 5.12 INSPECTION Joists shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of these specifications. If the purchaser wishes an inspection of the steel joists by someone other than the manufacturer's own inspectors, he shall be permitted to reserve the right to do so in his "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the joists at the manufacturing shop by the purchaser's inspectors at purchaser's expense. #### 5.13 PARALLEL CHORD SLOPED JOISTS The span of a parallel chord sloped joist shall be defined by the length along the slope. Minimum depth, load-carrying capacity, and bridging requirements shall be determined by the sloped definition of span. The Standard Load Table capacity shall be the component normal to the joist. #### SECTION 6. # ERECTION STABILITY AND HANDLING* When it is necessary for the erector to climb on the joists, extreme caution shall be exercised since unbridged joists may exhibit some degree of instability under the erector's weight. #### (a) Stability Requirements 1) <u>Before an employee is allowed on the steel joist</u>: BOTH ends of joists at columns (or joists designated as column joists) shall be attached to its supports. For all other joists a minimum of one end shall be attached before the employee is allowed on the joist. The attachment shall be in accordance with <u>Section 5.6 - End Anchorage</u>. When a bolted seat connection is used for erection purposes, as a minimum, the bolts shall be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This shall be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. - 2) On steel joists that do not require erection bridging as shown by the unshaded area of the Load Tables, only one employee shall be allowed on the steel joist unless all bridging is installed and anchored. - 3) Where the span of the steel joist is within the red shaded area of the Load Table, the following shall apply: - a) The row of bridging nearest the mid span of the steel joists shall be bolted diagonal erection bridging; and - b) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored, unless an alternate method of stabilizing the joist has been provided; and - c) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - 4) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide stability. - 5) In the case of bottom chord bearing joists, the ends of the joist shall be restrained laterally per Section 5.4(f). - 6) After the joist is straightened and plumbed, and all bridging is completely installed and anchored, the ends of the joists shall be fully connected to the supports in accordance with <u>Section 5.6 End Anchorage</u>. #### (b) Landing and Placing Loads - 1) Except as stated in paragraphs 6(b)(3) and 6(b)(4) of this section, no "construction loads"⁽¹⁾ shall be allowed on the steel joists until all bridging is installed and anchored, and all joist bearing ends are attached. - 2) During the construction period, loads placed on the steel joists shall be distributed so as not to exceed the capacity of the steel joists. - 3) The weight of a bundle of joist bridging shall not exceed a total of 1000 pounds (454 kilograms). The bundle of joist bridging shall be placed on a minimum of 3 steel joists that are secured at one end. The edge of the bridging bundle shall be positioned within 1 foot (0.30 m) of the secured end. - 4) No bundle of deck shall be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless the following conditions are met: - a) The contractor has first determined from a qualified person and documented in a site-specific erection plan that
the structure or portion of the structure is capable of supporting the load; - b) The bundle of decking is placed on a minimum of 3 steel joists; - c) The joists supporting the bundle of decking are attached at both ends; - d) At least one row of bridging is installed and anchored; - e) The total weight of the decking does not exceed 4000 pounds (1816 kilograms); and - f) The edge of the decking shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. - 5) The edge of the construction load shall be placed within 1 foot (.30 meters) of the bearing surface of the joist end. #### (c) Field Welding - 1) All field welding shall be performed in accordance with the contract documents. Field welding shall not damage the joists. - 2) On cold-formed members whose yield strength has been attained by cold working, and whose as-formed strength is used in the design, the total length of weld at any one point shall not exceed 50 percent of the overall developed width of the cold-formed section. #### (d) Handling Care shall be exercised at all times to avoid damage to the joists and accessories. #### (e) Fall Arrest Systems Steel joists shall not be used as anchorage points for a fall arrest system unless written direction to do so is obtained from a "qualified person" (2). *For a thorough coverage of this topic, refer to SJI Technical Digest 9, "Handling and Erection of Steel Joists and Joist Girders." (1) See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. for definition of "construction load". ⁽²⁾ See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. for definition of "qualified person". #### **DEFINITION OF SPAN** (U. S. Customary Units) NOTES: 1) DESIGN LENGTH = SPAN - 0.33 FT. - 2) BEARING LENGTH FOR STEEL SUPPORTS SHALL NOT BE LESS THAN 2½ INCHES; FOR MASONRY AND CONCRETE NOT LESS THAN 4 INCHES. - 3) PARALLEL CHORD JOISTS INSTALLED TO A SLOPE GREATER THAN ½ INCH PER FOOT SHALL USE SPAN DEFINED BY THE LENGTH ALONG THE SLOPE. # STANDARD LRFD LOAD TABLE ### **OPEN WEB STEEL JOISTS, K-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD K-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the unfactored DEAD load. In all cases the factored DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the factored LIVE load. The approximate joist weights do <u>not</u> include accessories. The **RED** figures in the Load Table represent the unfactored uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the unfactored uniform load for supplementary deflection criteria (i.e. an unfactored uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the **RED** figures by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as given in the Standard **ASD** Load Table for Open Web Steel Joists, **K**-Series. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: I_j = 26.767(W)(L³)(10⁻⁶), where W= RED figure in the Load Table, and L = (span – 0.33) in feet. The TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD K-**Series Steel Joists shall not exceed 825 plf for spans shorter than what is explicitly shown in the Load Table. The maximum prorated unfactored RED load shall not exceed 550 plf (the TOTAL load-carrying capacity of the joist as given in the Standard **ASD** Load Table for Open Web Steel Joists, **K-**Series). Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joist and Joist Girders. | | | | | | | , , | KF | | | | | | | | | |--------------------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------------|-------------------|--------------------|------------|------------|------------| | | | | | | | | | | EEL JO | | | | | | | | | Ba | sed On . | A 50 ksi | Maxim | um Yield | d Streng | th - Loa | ds Sho | wn In Po | ounds F | er Line | ar Foot | (plf) | | | | Joist
Designation | 10K1 | 12K1 | 12K3 | 12K5 | 14K1 | 14K3 | 14K4 | 14K6 | 16K2 | 16K3 | 16K4 | 16K5 | 16K6 | 16K7 | 16K9 | | Depth (in.) | 10 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Approx. Wt
(lbs./ft.) | 5.0 | 5.0 | 5.7 | 7.1 | 5.2 | 6.0 | 6.7 | 7.7 | 5.5 | 6.3 | 7.0 | 7.5 | 8.1 | 8.6 | 10.0 | | Span (ft.)
↓ | | | | | | | | | | | | | | | | | 10 | 825
550 | | | | | | | | | | | | | | | | 11 | 825
542 | | | | | | | | | | | | | | | | 12 | 825
455 | 825
550 | 825
550 | 825
550 | | | | | | | | | | | | | 13 | 718
363 | 825
510 | 825
510 | 825
510 | | | | | | | | | | | | | 14 | 618
289 | 750
425 | 825
463 | 825
463 | 825
550 | 825
550 | 825
550 | 825
550 | | | | | | | | | 15 | 537
234 | 651
344 | 814
428 | 825
434 | 766
475 | 825
507 | 825
507 | 825
507 | | | | | | | | | 16 | 469
192 | 570
282 | 714
351 | 825
396 | 672
390 | 825
467 | 825
467 | 825
467 | 825
550 | 17 | 415
159 | 504
234 | 630
291 | 825
366 | 592
324 | 742
404 | 825
443 | 825
443 | 768
488 | 825
526 | 825
526 | 825
526 | 825
526 | 825
526 | 825
526 | | 18 | 369
134 | 448
197 | 561
245 | 760
317 | 528
272 | 661
339 | 795
397 | 825
408 | 684
409 | 762
456 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | | 19 | 331 | 402 | 502 | 681 | 472 | 592 | 712 | 825 | 612 | 682 | 820 | 825 | 825 | 825 | 825 | | 20 | 113
298 | 167
361 | 207
453 | 269
613 | 230
426 | 287
534 | 336
642 | 383
787 | 347
552 | 386
615 | 452
739 | 825 | 455
825 | 455
825 | 455
825 | | 21 | 97 | 142
327 | 177
409 | 230
555 | 197
385 | 246
483 | 287
582 | 347
712 | 297
499 | 330
556 | 386
670 | 426
754 | 426
822 | 426
825 | 426
825 | | 22 | | 123
298 | 1 <u>53</u>
373 | 198
505 | 170
351 | 212
439 | 248
529 | 299
648 | 255
454 | 285
505 | 333
609 | 373
687 | 405
747 | 406
825 | 406
825 | | 23 | | 106
271 | 132
340 | 172
462 | 147
321 | 184
402 | 215
483 | 259
592 | 222
415 | 247
462 | 289
556 | 32 <u>3</u>
627 | 351
682 | 385
760 | 385
825 | | 24 | | 93
249 | 116
312 | 150
423 | 128
294 | 160
367 | 188
442 | 226
543 | 194
381 | 216
424 | 252
510 | 282
576 | 307
627 | 339
697 | 363
825 | | 25 | | 81 | 101 | 132 | 113
270 | 141
339 | 165
408 | 199
501 | 170
351 | 189
390 | 221
469 | 248
529 | 269
576 | 298
642 | 346
771 | | 26 | | | | | 100
249 | 124
313 | 145
376 | 175
462 | 150
324 | 167
360 | 195
433 | 219
489 | 238
532 | 263
592 | 311
711 | | 27 | | | | | 88
231 | 110
289 | 129
349 | 156
427 | 133
300 | 148
334 | 173
402 | 194
453 | 211
493 | 233
549 | 276
658 | | 28 | | | | | 79
214 | 98
270 | 115
324 | 139
397 | 119
279 | 132
310 | 155
373 | 173
421 | 188
459 | 208
510 | 246
612 | | 29 | | | | | 70 | 88 | 103 | 124 | 106
259 | 118
289 | 138
348 | 155
391 | 168
427 | 186
475 | 220
570 | | 30 | | | | | | | | | 95
241 | 106
270 | 124
324 | 139
366 | 151
399 | 167
444 | 198
532 | | 31 | | | | | | | | | 86
226 | 96
252 | 112
304 | 126
342 | 137
373 | 151
415 | 178
498 | | | | | | | | | | | 78
213 | 252
87
237 | 304
101
285 | 342
114
321 | 124 | 137 | 161 | | 32 | | | | | | | | | 213
71 | 79 | 285
92 | 321
103 | 349
112 | 388
124 | 466
147 | | | | | Rased | _ | | | | | | | | _ | | ISTS, K
ounds F | | | oot (n | lf\ | | | | |----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|-------------------|------------|------------|------------|------------|------------|------------| | Joist | 18K3 | 18K4 | | 18K6 | | 18K9 | | 20K3 | 20K4 | 20K5 | | 20K7 | | | 22K4 | 22K5 | 22K6 | 22K7 | 22K9 | 22K10 | 22K11 | | Designation
Depth (In.) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | Approx. Wt. | 6.4 | 7.2 | 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 6.5 | 7.2
| 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 7.3 | 7.7 | 8.5 | 9.0 | 10.2 | 11.7 | 11.9 | | (lbs./ft.) | 0.4 | 1.2 | 7.7 | 0.4 | 0.9 | 10.1 | 11.0 | 0.5 | 1.2 | 1.1 | 0.4 | 0.9 | 10.1 | 11.0 | 1.3 | 1.1 | 0.5 | 9.0 | 10.2 | 11.7 | 11.5 | | Span (ft.)
↓ | 18 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | | | | | | | | | 19 | 550
771 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | | 13 | 494 | 523 | 523 | 523 | 523 | 523 | 523 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | 20 | 694
423 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | 775
517 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | | | | | | | | | 21 | 630 | 759 | 825 | 825 | 825 | 825 | 825 | 702 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | 364 | 426 | 460 | 460 | 460 | 460 | 460 | 453 | 520 | 520 | 520 | 520 | 520 | 520 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 22 | 573
316 | 690
370 | 777
414 | 825
438 | 825
438 | 825
438 | 825
438 | 639
393 | 771
461 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | 825
548 | 23 | 523 | 630 | 709 | 774 | 825 | 825 | 825 | 583 | 703 | 793 | 825 | 825 | 825 | 825 | 777 | 825 | 825 | 825 | 825 | 825 | 825 | | 24 | 276
480 | 323
577 | 362
651 | 393
709 | 418
789 | 418
825 | 418
825 | 344
535 | 402
645 | 451
727 | 468
792 | 468
825 | 468
825 | 468
825 | 491
712 | 518
804 | 518
825 | 518
825 | 518
825 | 518
825 | 518
825 | | 27 | 242 | 284 | 318 | 345 | 382 | 396 | 396 | 302 | 353 | 396 | 430 | 448 | 448 | 448 | 431 | 483 | 495 | 495 | 495 | 495 | 495 | | 25 | 441 | 532 | 600 | 652 | 727 | 825 | 825 | 493 | 594 | 669 | 729 | 811 | 825 | 825 | 657 | 739 | 805 | 825 | 825 | 825 | 825 | | 26 | 214
408 | 250
492 | 281
553 | 305
603 | 337
672 | 377
807 | 377
825 | 266
456 | 312
549 | 350
618 | 380
673 | 421
750 | 825 | 426
825 | 381
606 | 427
682 | 464
744 | 474
825 | 474
825 | 474
825 | 474
825 | | - | 190 | 222 | 249 | 271 | 299 | 354 | 361 | 236 | 277 | 310 | 337 | 373 | 405 | 405 | 338 | 379 | 411 | 454 | 454 | 454 | 454 | | 27 | 378
169 | 454
198 | 513
222 | 558
241 | 622
267 | 747
315 | 825
347 | 421
211 | 508
247 | 573
277 | 624
301 | 694
333 | 825
389 | 825
389 | 561
301 | 633
337 | 688
367 | 768
406 | 825
432 | 825
432 | 825
432 | | 28 | 351 | 423 | 477 | 519 | 577 | 694 | 822 | 391 | 472 | 532 | 579 | 645 | 775 | 825 | 522 | 588 | 640 | 712 | 825 | 825 | 825 | | 20 | 151 | 177 | 199 | 216 | 239 | 282 | 331 | 189 | 221 | 248 | 269 | 298 | 353 | 375 | 270 | 302 | 328 | 364 | 413 | 413
825 | 413
825 | | 29 | 327
136 | 394
159 | 444
179 | 483
194 | 538
215 | 646
254 | 766
298 | 364
170 | 439
199 | 495
223 | 540
242 | 601
268 | 723
317 | 825
359 | 486
242 | 547
272 | 597
295 | 664
327 | 798
387 | 399 | 825
399 | | 30 | 304 | 367 | 414 | 451 | 502 | 603 | 715 | 340 | 411 | 462 | 504 | 561 | 675 | 799 | 453 | 511 | 556 | 619 | 745 | 825 | 825 | | 31 | 123
285 | 144
343 | 161
387 | 175
421 | 194
469 | 229
564 | 269
669 | 153
318 | 179
384 | 201
433 | 218
471 | 242
525 | 286
631 | 336
748 | 219
424 | 245
478 | 266
520 | 295
580 | 349
697 | 385
825 | 385
825 | | ŭ. | 111 | 130 | 146 | 158 | 175 | 207 | 243 | 138 | 162 | 182 | 198 | 219 | 259 | 304 | 198 | 222 | 241 | 267 | 316 | 369 | 369 | | 32 | 267 | 322 | 363 | 396 | 441 | 529 | 627 | 298 | 360 | 406 | 442 | 492 | 592 | 702 | 397 | 448 | 489 | 544 | 654 | 775 | 823 | | 33 | 101
252 | 118
303 | 132
342 | 144
372 | 159
414 | 188
498 | 221
589 | 126
280 | 147
339 | 165
381 | 179
415 | 199
463 | 235
556 | 276
660 | 180
373 | 201
421 | 219
459 | 242
511 | 287
615 | 337
729 | 355
798 | | | 92 | 108 | 121 | 131 | 145 | 171 | 201 | 114 | 134 | 150 | 163 | 181 | 214 | 251 | 164 | 183 | 199 | 221 | 261 | 307 | 334 | | 34 | 237
84 | 285
98 | 321
110 | 349
120 | 390
132 | 468
156 | 555
184 | 264
105 | 318
122 | 358
137 | 391
149 | 435
165 | 523
195 | 621
229 | 352
149 | 397
167 | 432
182 | 481
202 | 579
239 | 687
280 | 774
314 | | 35 | 223 | 268 | 303 | 330 | 367 | 441 | 523 | 249 | 300 | 339 | 369 | 411 | 493 | 585 | 331 | 373 | 408 | 454 | 546 | 648 | 741 | | 36 | 77
211 | 90
253 | 101
286 | 110
312 | 121
348 | 143
417 | 168
495 | 96
235 | 112
283 | 126
319 | 137
348 | 151
388 | 179
466 | 210
553 | 137
313 | 153
354 | 167
385 | 185
429 | 219
516 | 257
612 | 292
700 | | 36 | 70 | 82
82 | 92 | | 111 | | | 88 | 103 | 115 | 125 | 139 | 164 | 193 | 126 | 141 | 153 | 169 | 201 | 236 | 269 | | 37 | | | | | | | | 222 | 268 | 303 | 330 | 367 | 441 | 523 | 297 | 334 | 364 | 406 | 487 | 579 | 663 | | 38 | | | | | | | | 211 | 95
255 | 106
286 | 115
312 | 128
348 | 151
418 | 178
496 | 116
280 | 130
316 | 141
345 | 156
384 | 185
462 | 217
549 | 247
628 | | | | | | | | | | 74 | 87 | 98 | 106 | 118 | 139 | 164 | 107 | 119 | 130 | 144 | 170 | 200 | 228 | | 39 | | | | | 1 | | | 199
69 | 241
81 | 271
90 | 297
98 | 330
109 | 397
129 | 471
151 | 267
98 | 300
110 | 327
120 | 364
133 | 438
157 | 520
185 | 595
211 | | 40 | | | 4 | | | | | 190 | 229 | 258 | 282 | 313 | 376 | 447 | 253 | 285 | 310 | 346 | 417 | 495 | 565 | | 44 | | | | | | | | 64 | 75 | 84 | 91 | 101 | 119 | 140 | 91 | 102 | 111 | 123 | 146 | 171
471 | 195 | | 41 | | | | | | | | | | | | | | | 241
85 | 271
95 | 295
103 | 330
114 | 396
135 | 471
159 | 538
181 | | 42 | | | | | | | | | | | | | | | 229 | 259 | 282 | 313 | 378 | 448 | 513 | | 43 | | | | | | | | | | | | | | | 79
219 | 88
247 | 96
268 | 106
300 | 126
360 | 148
427 | 168
489 | | .~ | | | | | | | | | | | | | | | 73 | 82 | 89 | 99 | 117 | 138 | 157 | | 44 | | | | | | | | | | | | | | | 208
68 | 235
76 | 256
83 | 286
92 | 343
109 | 408
128 | 466
146 | | | | | <u> </u> | | | | | | | | | | | | 00 | 70 | บง | 92 | 109 | 140 | 140 | | | | | | | | BLE FO | | WEB S | TEEL JO | | | | | | | |----------------------------|------------|-------------------|------------|-------------------|-----------------|------------|--------------------|--------------------|------------|------------------|------------------|-------------------|------------|------------|------------| | Joist | 24K4 | 24K5 | 24K6 | (SI Maxii
24K7 | mum Yio
24K8 | 24K9 | 1gth - Lo
24K10 | 24K12 | wn In Po | 26K6 | er Linea
26K7 | r Foot (p
26K8 | 26K9 | 26K10 | 26K12 | | Designation
Depth (In.) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | Approx. Wt. | 7.8 | 7.9 | 8.5 | 9.0 | 9.4 | 10.3 | 11.7 | 13.5 | 8.1 | 8.6 | 9.0 | 9.7 | 10.4 | 11.8 | 13.7 | | (lbs./ft.)
Span (ft.) | | | | | | | | | | | | | | | | | · ↓ ` ´ | | | | | | | | | | | | | | 4 | | | 23 | 825
550 | | | | | | | | 24 | 780
516 | 825
544 | 825
544 | 825
544 | 825
544 | 825
544 | 825
544 | 825
544 | | | | | | | | | 25 | 718 | 810 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | 26 | 456
663 | 511
748 | 520
814 | 520
825 | 520
825 | 520
825 | 520
825 | 520
825 | 550
813 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | | | 405 | 453 | 493 | 499 | 499 | 499 | 499 | 499 | 535 | 541 | 541 | 541 | 541 | 541 | 541 | | 27 | 615
361 | 693
404 | 754
439 | 825
479 | 825
479 | 825
479 | 825
479 | 825
479 | 753
477 | 820
519 | 825
522 | 825
522 | 825
522 | 825
522 | 825
522 | | 28 | 571 | 643 | 700 | 781 | 825 | 825 | 825 | 825 | 699 | 762 | 825 | 825 | 825 | 825 | 825 | | 29 | 323
531 | 362
600 | 393
652 | 436
727 | 456
804 | 456
825 | 456
825 | 456
825 | 427
651 | 464
709 | 501
790 | 501
825 | 501
825 | 501
825 | 501
825 | | | 290 | 325 | 354 | 392 | 429 | 436 | 436 | 436 | 384 | 417 | 463 | 479 | 479 | 479 | 479 | | 30 | 496
262 | 559
293 | 609
319 | 679
353 | 750
387 | 816
419 | 825
422 | 825
422 | 607
346 | 661
377 | 738
417 | 816
457 | 825
459 | 825
459 | 825
459 | | 31 | 465 | 523 | 570 | 636 | 702 | 765 | 825 | 825 | 568 | 619 | 690 | 763 | 825 | 825 | 825 | | 32 | 237
435 | 266
490 | 289
535 | 320
595 | 350
658 | 379
717 | 410
823 | 410
823 | 314
534 | 341
580 | 378
648 | 413
715 | 778 | 823 | 444
823 | | | 215 | 241 | 262 | 290 | 318 | 344 | 393 | 393 | 285 | 309 | 343 | 375 | 407 | 431 | 431 | | 33 | 409
196 | 462
220 | 502
239 | 559
265 | 619
289 | 673
313 | 798
368 | 798
368 | 501
259 | 546
282 | 609
312 | 672
342 | 732
370 | 798
404 | 798
404 | | 34 | 385 | 435 | 472 | 526 | 582 | 634 | 753 | 774 | 472 | 514 | 573 | 633 | 688 | 774 | 774 | | 35 | 179
363 | 201
409 | 218
445 | 242
496 | 264
549 | 286
598 | 337
709 | 344
751 | 237
445 | 257
484 | 285
540 | 312
597 | 338
649 | 378
751 | 378
751 | | | 164 | 184 | 200 | 221 | 242 | 262 | 308 | 324 | 217 | 236 | 261 | 286 | 310 | 356 | 356 | | 36 | 343
150 | 387
169 | 421
183 | 469
203 | 519
222 | 565
241 | 670
283 | 730
30 6 | 420
199 | 457
216 | 510
240 | 564
263 | 613
284 | 729
334 | 730
334 | | 37 | 324 | 366 | 399 | 444 | 490 | 534 | 634 | 711 | 397 | 433 | 483 | 534 | 580 | 690 | 711
 | 38 | 138
307 | 155
346 | 169
378 | 187
421 | 205
465 | 222
507 | 260
601 | 290
691 | 183
376 | 199
411 | 221
457 | 242
505 | 262
550 | 308
654 | 315
691 | | | 128 | 143 | 156 | 172 | 189 | 204 | 240 | 275 | 169 | 184 | 204 | 223 | 241 | 284 | 299 | | 39 | 292
118 | 328
132 | 358
144 | 399
159 | 441
174 | 480
189 | 570
222 | 673
261 | 357
156 | 390
170 | 433
188 | 480
206 | 522
223 | 619
262 | 673
283 | | 40 | 277 | 312 | 340 | 379 | 420 | 456 | 541 | 657 | 340 | 370 | 412 | 456 | 496 | 589 | 657 | | 41 | 109
264 | 122
297 | 133
324 | 148
361 | 161
399 | 175
435 | 206
516 | 247
640 | 145
322 | 157
352 | 174
393 | 191
433 | 207
472 | 243
561 | 269
640 | | | 101 | 114 | 124 | 137 | 150 | 162 | 191 | 235 | 134 | 146 | 162 | 177 | 192 | 225 | 256 | | 42 | 252
94 | 283
106 | 309
115 | 343
127 | 379
139 | 414
151 | 490
177 | 625
224 | 307
125 | 336
136 | 373
150 | 412
164 | 450
178 | 534
210 | 625
244 | | 43 | 240 | 270 | 294 | 328 | 363 | 394 | 468 | 609 | 294 | 319 | 357 | 394 | 429 | 508 | 610 | | 44 | 229 | 98
258 | 107
280 | 118
313 | 130
346 | 140
376 | 165
447 | 213
580 | 116
280 | 126
306 | 140
340 | 153
376 | 166
409 | 195
486 | 232
597 | | 45 | 82 | 92 | 100 | 110 | 121 | 131 | 154 | 199 | 108 | 118 | 131 | 143 | 155 | 182 | 222 | | 45 | 219
76 | 246
86 | 268
93 | 298
103 | 330
113 | 360
122 | 427
144 | 555
185 | 268
101 | 291
110 | 325
122 | 360
133 | 391
145 | 465
170 | 583
212 | | 46 | 208
71 | 235
80 | 256
87 | 286
97 | 316
106 | 345
114 | 408
135 | 531
174 | 256
95 | 279
103 | 310
114 | 343
125 | 375
135 | 444
159 | 570
203 | | 47 | 199 | 225 | 246 | 274 | 303 | 330 | 391 | 508 | 246 | 267 | 298 | 328 | 358 | 426 | 553 | | 48 | 67
192 | 75
216 | 82
235 | 90
262 | 99
291 | 107
316 | 126
375 | 163
487 | 89
235 | 96
256 | 107
285 | 117
315 | 127
343 | 149
408 | 192
529 | | | 63 | 70 | 77 | 85
85 | 93 | 101 | 118 | 153 | 83 | 90 | 100 | 110 | 119 | 140 | 180 | | 49 | | | | | | | | | 225
78 | 246
85 | 274
94 | 303
103 | 330
112 | 391
131 | 508
169 | | 50 | | | | | | | | | 216 | 235 | 262 | 291 | 316 | 375 | 487 | | 51 | | | | | | | | | 73
208 | 80
226 | 89
252 | 97
279 | 105
304 | 124
361 | 159
469 | | | 4 | | | | | | | | 69 | 75 | 83 | 91 | 99 | 116 | 150 | | 52 | | | | | | | | | 199
65 | 217
71 | 243
79 | 268
86 | 292
93 | 346
110 | 451
142 | | | | | | | | , , , | | | | | | | |--------------------------|------------|--------------------------|------------|------------|------------|-------------------------|------------|------------|------------|------------|------------|-------------------| | | Ва | ased On A | | | | PEN WEB S
th - Loads | | | | Foot (plf) | | | | Joist
Designation | 28K6 | 28K7 | 28K8 | 28K9 | 28K10 | 28K12 | 30K7 | 30K8 | 30K9 | 30K10 | 30K11 | 30K12 | | Depth (In.) | 28 | 28 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 | 30 | 30 | | Approx. Wt. | 8.9 | 9.2 | 9.8 | 10.5 | 11.8 | 14.5 | 9.6 | 10.0 | 10.6 | 11.9 | 13.3 | 15.0 | | (lbs./ft.)
Span (ft.) | | | | | | | | | | | | | | ↓ | | | | | | | | | | | | | | 27 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | 28 | 550
822 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | | | | | | | | 20 | 541 | 543 | 543 | 543 | 543 | 543 | | | | | | | | 29 | 766 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | 30 | 486
715 | 522
796 | 522
825 | 522
825 | 522
825 | 522
825 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | 550
825 | | | 439 | 486 | 500 | 500 | 500 | 500 | 543 | 543 | 543 | 543 | 543 | 543 | | 31 | 669
397 | 745
440 | 825
480 | 825
480 | 825
480 | 825
480 | 801
508 | 825
520 | 825
520 | 825
520 | 825
520 | 825
520 | | 32 | 627 | 699 | 772 | 823 | 823 | 823 | 751 | 823 | 823 | 823 | 823 | 823 | | | 361 | 400 | 438 | 463 | 463 | 463 | 461 | 500 | 500 | 500 | 500 | 500 | | 33 | 589
329 | 657
364 | 726
399 | 790
432 | 798
435 | 798
435 | 706
420 | 780
460 | 798
468 | 798
468 | 798
468 | 798
468 | | 34 | 555 | 618 | 684 | 744 | 774 | 774 | 664 | 735 | 774 | 774 | 774 | 774 | | | 300 | 333 | 364 | 395 | 410 | 410 | 384 | 420 | 441 | 441 | 441 | 441 | | 35 | 523
275 | 583
305 | 645
333 | 702
361 | 751
389 | 751
389 | 627
351 | 693
384 | 751
415 | 751
415 | 751
415 | 751
415 | | 36 | 495 | 550 | 609 | 663 | 730 | 730 | 592 | 654 | 712 | 730 | 730 | 730 | | 27 | 252 | 280 | 306
576 | 332 | 366 | 366 | 323 | 353 | 383
673 | 392 | 392 | 392 | | 37 | 468
232 | 522
257 | 576
282 | 627
305 | 711
344 | 711
344 | 559
297 | 619
325 | 673
352 | 711
374 | 711
374 | 711
374 | | 38 | 444 | 493 | 546 | 594 | 691 | 691 | 531 | 586 | 639 | 691 | 691 | 691 | | 39 | 214
420 | 237
469 | 260
519 | 282
564 | 325
670 | 325
673 | 274
504 | 300
556 | 325
606 | 353
673 | 353
673 | 353
673 | | 39 | 420
198 | 219 | 240 | 260 | 306 | 308 | 253 | 277 | 300 | 333 | 333 | 333 | | 40 | 399 | 445 | 492 | 535 | 636 | 657 | 478 | 529 | 576 | 657 | 657 | 657 | | 41 | 183
379 | 203
424 | 222
468 | 241
510 | 284
606 | 291
640 | 234
454 | 256
502 | 278
547 | 315
640 | 315
640 | 315
640 | | 71 | 170 | 189 | 206 | 224 | 263 | 277 | 217 | 238 | 258 | 300 | 300 | 300 | | 42 | 361 | 403 | 445 | 486 | 576 | 625 | 433 | 480 | 522 | 619 | 625 | 625 | | 43 | 158
345 | 175
385 | 192
426 | 208
463 | 245
550 | 264
610 | 202
414 | 221
457 | 240
498 | 282
591 | 284
610 | 284
610 | | | 147 | 163 | 179 | 194 | 228 | 252 | 188 | 206 | 223 | 263 | 270 | 270 | | 44 | 330
137 | 367
152 | 406
167 | 442
181 | 525
212 | 597
240 | 394
176 | 436
192 | 475
208 | 564
245 | 597
258 | 597
258 | | 45 | 315 | 351 | 388 | 423 | 501 | 583 | 376 | 417 | 454 | 538 | 583 | 583 | | 40 | 128 | 142 | 156 | 169 | 198 | 229 | 164 | 179 | 195 | 229 | 246 | 246 | | 46 | 301
120 | 336
133 | 372
146 | 405
158 | 480
186 | 570
219 | 361
153 | 399
168 | 435
182 | 516
214 | 570
236 | 570
236 | | 47 | 288 | 321 | 355 | 387 | 459 | 558 | 345 | 382 | 415 | 493 | 558 | 558 | | 40 | 112
276 | 12 <mark>5</mark>
309 | 136 | 148
370 | 174
441 | 210
547 | 144
331 | 157
366 | 171
399 | 201
472 | 226
543 | 226
547 | | 48 | 276
105 | 309
117 | 340
128 | 139 | 441
163 | 547
201 | 331
135 | 366
148 | 399
160 | 472
188 | 543
215 | 547
216 | | 49 | 265 | 295 | 327 | 355 | 423 | 535 | 318 | 351 | 382 | 454 | 520 | 535 | | 50 | 99
255 | 110
283 | 120
313 | 130
342 | 153
405 | 193
525 | 127
304 | 139
337 | 150
367 | 177
436 | 202
499 | 207
525 | | 30 | 93 | 103 | 113 | 123 | 144 | 185 | 119 | 130 | 367
141 | 166 | 499
190 | 199 | | 51 | 244 | 273 | 301 | 328 | 390 | 507 | 292 | 324 | 352 | 418 | 480 | 514 | | 52 | 88
235 | 97
262 | 106
289 | 115
315 | 136
375 | 175
487 | 112
282 | 123
312 | 133
339 | 157
402 | 179
462 | 192
504 | | | 83 | 92 | 100 | 109 | 128 | 165 | 106 | 116 | 126 | 148 | 169 | 184 | | 53 | 226
78 | 252
87 | 279
95 | 304 | 360
121 | 469
466 | 271 | 300 | 327
440 | 387 | 444
450 | 495
477 | | 54 | 217 | 243 | 268 | 103
292 | 348 | 156
451 | 100
261 | 109
288 | 119
313 | 140
373 | 159
427 | 177
486 | | | 74 | 82 | 89 | 97 | 114 | 147 | 94 | 103 | 112 | 132 | 150 | 170 | | 55 | 210
70 | 234
77 | 259
85 | 282
92 | 334
108 | 435
139 | 252
89 | 277
98 | 303
106 | 360
125 | 412
142 | 468
161 | | 56 | 202 | 226 | 249 | 271 | 322 | 420 | 243 | 268 | 292 | 346 | 397 | 451 | | | 66 | 73 | 80 | 87 | 102 | 132 | 84 | 92 | 100 | 118 | 135 | 153 | | 57 | | | | | | | 234
80 | 259
88 | 282
95 | 334
112 | 384
128 | 435
145 | | 58 | | | | | | | 226 | 250 | 271 | 322 | 370 | 420 | | 59 | | | | | | | 76
219 | 83
241 | 90
262 | 106
312 | 121
358 | 137
406 | | | | | | | | | 72 | 79 | 86 | 101 | 115 | 130 | | 60 | | | | | | | 211 | 234
75 | 253
84 | 301 | 346
409 | 393 | | | | | | <u> </u> | | | 69 | 75 | 81 | 96 | 109 | 124 | # STANDARD ASD LOAD TABLE #### **OPEN WEB STEEL JOISTS, K-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute November 4, 1985 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD K-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the DEAD load. In all cases the DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the uniform load for supplementary deflection criteria (i.e. a uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figure by 360/240). In no case shall the prorated load exceed the TOTAL load-carrying capacity of the joist. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span
shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'-0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: $I_j = 26.767(W)(L^3)(10^{-6})$, where W= RED figure in the Load Table, and L = (span - 0.33) in feet. The TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD K-**Series Steel Joists shall not exceed 550 plf for spans shorter than what is explicitly shown in the Load Table. The maximum prorated RED load shall not exceed 550 plf (the TOTAL load-carrying capacity of the joist as given in the Standard **ASD** Load Table for Open Web Steel Joists, **K-**Series). Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joist and Joist Girders. | | _ | | _ | | | _ | _ | _ | EEL JO | , | _ | | | | | |--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | Ва | sed on a | a 50 ksi | Maximu | ım Yield | l Streng | th - Loa | ds Sho | wn In Po | ounds P | er Line | ar Foot | (plf) | | | | Joist
Designation | 10K1 | 12K1 | 12K3 | 12K5 | 14K1 | 14K3 | 14K4 | 14K6 | 16K2 | 16K3 | 16K4 | 16K5 | 16K6 | 16K7 | 16K9 | | Depth (in.) | 10 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Approx. Wt
(lbs./ft.) | 5.0 | 5.0 | 5.7 | 7.1 | 5.2 | 6.0 | 6.7 | 7.7 | 5.5 | 6.3 | 7.0 | 7.5 | 8.1 | 8.6 | 10.0 | | Span (ft.) | | | | | | | | | | | | | | | | | 10 | 550
550 | | | | | | | | | | | | | | | | 11 | 550
542 | | | | | | | | | | | | | | | | 12 | 550
455 | 550
550 | 550
550 | 550
550 | | | | | | | | | | | | | 13 | 479
363 | 550
510 | 550
510 | 550
510 | | | | | | | | | | | | | 14 | 412
289 | 500
425 | 550
463 | 550
463 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | | 15 | 358
234 | 434
344 | 543
428 | 550
434 | 511
475 | 550
507 | 550
507 | 550
507 | | | | | | | | | 16 | 313
192 | 380
282 | 476
351 | 550
396 | 448
390 | 550
467 | 550
467 | 550
467 | 550
550 | 17 | 277
159 | 336
234 | 420
291 | 550
366 | 395
324 | 495
404 | 550
443 | 550
443 | 512
488 | 550
526 | 550
526 | 550
526 | 550
526 | 550
526 | 550
526 | | 18 | 246
134 | 299
197 | 374
245 | 507
317 | 352
272 | 441
339 | 530
397 | 550
408 | 456
409 | 508
456 | 550
490 | 550
490 | 550
490 | 550
490 | 550
490 | | 19 | 221
113 | 268
167 | 335
207 | 454
269 | 315
230 | 395
287 | 475
336 | 550
383 | 408
347 | 455
386 | 547
452 | 550
455 | 550
455 | 550
455 | 550
455 | | 20 | 199
97 | 241
142 | 302
177 | 409
230 | 284
197 | 356
246 | 428
287 | 525
347 | 368
297 | 410
330 | 493
386 | 550
426 | 550
426 | 550
426 | 550
426 | | 21 | | 218
123 | 273
153 | 370
198 | 257
170 | 322
212 | 388
248 | 475
299 | 333
255 | 371
285 | 447
333 | 503
373 | 548
405 | 550
406 | 550
406 | | 22 | | 199
106 | 249
132 | 337
172 | 234
147 | 293
184 | 353
215 | 432
259 | 303
222 | 337
247 | 406
289 | 458
323 | 498
351 | 550
385 | 550
385 | | 23 | | 181
93 | 227
116 | 308
150 | 214
128 | 268
160 | 322
188 | 395
226 | 277
194 | 308
216 | 371
252 | 418
282 | 455
307 | 507
339 | 550
363 | | 24 | | 166
81 | 208
101 | 282
132 | 196
113 | 245
141 | 295
165 | 362
199 | 254
170 | 283
189 | 340
221 | 384
248 | 418
269 | 465
298 | 550
346 | | 25 | | | | | 180
100 | 226
124 | 272
145 | 334
175 | 234
150 | 260
167 | 313
195 | 353
219 | 384
238 | 428
263 | 514
311 | | 26 | | | | | 166
88 | 209
110 | 251
129 | 308
156 | 216
133 | 240
148 | 289
173 | 326
194 | 355
211 | 395
233 | 474
276 | | 27 | | | | | 154
79 | 193
98 | 233
115 | 285
139 | 200
119 | 223
132 | 268
155 | 302
173 | 329
188 | 366
208 | 439
246 | | 28 | | | | | 143
70 | 180
88 | 216
103 | 265
124 | 186
106 | 207
118 | 249
138 | 281
155 | 306
168 | 340
186 | 408
220 | | 29 | | | | | | | | | 173
95 | 193
106 | 232
124 | 261
139 | 285
151 | 317
167 | 380
198 | | 30 | | | | | | | | | 161
86 | 180
96 | 216
112 | 244
126 | 266
137 | 296
151 | 355
178 | | 31 | | | | | | | | | 151
78 | 168
87 | 203
101 | 228
114 | 249
124 | 277
137 | 332
161 | | 32 | | | | | | | | | 142
71 | 158
79 | 190
92 | 214
103 | 233
112 | 259
124 | 311
147 | | | | | Based | | | | | | | | | | | STS, K
unds F | | | oot (n | lf\ | | | | |----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------| | Joist | 18K3 | 18K4 | 18K5 | 18K6 | 18K7 | 18K9 | | 20K3 | 20K4 | 20K5 | 20K6 | 20K7 | 20K9 | 20K10 | 22K4 | 22K5 | 22K6 | | 22K9 | 22K10 | 22K11 | | Designation
Depth (In.) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | Approx. Wt. | 6.4 | 7.2 | 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 6.5 | 7.2 | 7.7 | 8.4 | 8.9 | 10.1 | 11.6 | 7.3 | 7.7 | 8.5 | 9.0 | 10.2 | 11.7 | 11.9 | | (lbs./ft.) | 0.4 | | | 0.4 | 0.0 | 10.1 | 11.0 | 0.0 | | | 0.4 | 0.5 | 10.1 | 11.0 | 7.0 | | 0.0 | 0.0 | 10.2 | | | | Span (ft.)
↓ | 18 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | | | | | | | | 19 | 550
514 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | | 494 | 523 | 523 | 523 | 523 | 523 | 523 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | 4 | | 20 | 463
423 | 550
490 | 550
490 | 550
490 | 550
490 | 550
490 | 550
490 | 517
517 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | | 21 | 420 | 506 | 550 | 550 | 550 | 550 | 550 | 468 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 22 | 364
382 | 426
460 | 460
518 | 460
550 | 460
550 | 460
550 | 460
550 | 453
426 | 520
514 | 520
550 | 520
550 | 520
550 | 520
550 | 520
550 | 550
550 | | 316 | 370 | 414 | 438 | 438 | 438 | 438 | 393 | 461 | 490 | 490 | 490 | 490 | 490 | 548 | 548 | 548 | 548 | 548 | 548 | 548 | | 23 | 349
276 | 420
323 | 473
362 | 516
393 | 550
418 | 550
418 | 550
418 | 389
344 | 469
402 | 529
451 | 550
468 | 550
468 | 550
468 | 550
468 | 518
491 | 550
518 | 550
518 | 550
518 | 550
518 | 550
518 | 550
518 | | 24 | 320 | 385 | 434 | 473 | 526 | 550 | 550 | 357 | 430 | 485 | 528 | 550 | 550 | 550 | 475 | 536 | 550 | 550 | 550 | 550 | 550 | | | 242 | 284 | 318 | 345 | 382 | 396 | 396 | 302 | 353 | 396 | 430 | 448 | 448 | 448 | 431 | 483 | 495 | 495 | 495 | 495 | 495 | | 25 | 294
214 | 355
250 | 400
281 | 435
305 | 485
337 | 550
377 | 550
377 | 329
266 | 396
312 | 446
350 | 486
380 | 541
421 | 550
426 | 550
426 | 438
381 | 493
427 | 537
464 | 550
474 | 550
474 | 550
474 | 550
474 | | 26 | 272 | 328 | 369 | 402 | 448 | 538 | 550 | 304 | 366 | 412 | 449 | 500 | 550 | 550 | 404 | 455 | 496 | 550 | 550 | 550 | 550 | | 27 | 190
252 | 303 | 249
342 | 271
372 | 299
415 | 354
498 | 361
550 | 236
281 | 277
339 | 310
382 | 337
416 | 373
463 | 405
550 | 405
550 | 338
374 | 379
422 | 411
459 | 454
512 | 454
550 | 454
550 | 454
550 | | Z.I | 169 | 198 | 222 | 241 | 267 | 315 | 347 | 211 | 247 | 277 | 301 | 333 | 389 | 389 | 301 | 337 | 367 | 406 | 432 | 432 | 432 | | 28 | 234 | 282 | 318 | 346 | 385 | 463 | 548 | 261 | 315 | 355 | 386 | 430 | 517 | 550 | 348 | 392 | 427 | 475 | 550 | 550 | 550 | | 29 | 151
218 | 177
263 | 199
296 | 216
322 | 239
359 | 282
431 | 331
511 | 189
243 | 221
293 | 248
330 | 269
360 | 298
401 | 353
482 | 375
550 | 270
324 | 365 | 328
398 | 364
443 | 413
532 | 413
550 | 413
550 | | | 136 | 159 | 179 | 194 | 215 | 254 | 298 | 170 | 199 | 223 | 242 | 268 | 317 | 359 | 242 | 272 | 295 | 327 | 387 | 399 | 399 | | 30 | 203
123 | 245
144 | 276
161 | 301
175 | 335
194 | 402
229 | 477
269 | 227
153 | 274
179 | 308
201 | 336
218 | 374
242 | 450
286 | 533
336 | 302
219 | 341
245 | 371
266 | 413
295 | 497
349 | 550
385 | 550
385 | | 31 | 190 | 229 | 258 | 281 | 313 | 376 | 446 | 212 | 256 | 289 | 314 | 350 | 421 | 499 | 283 | 319 | 347 | 387 | 465 | 550 | 550 | | 32 | 111
178 | 130
215 | 146
242 | 158
264 | 175
294 | 207
353 | 243
418 | 138
199 | 162
240 | 182
271 | 198
295 | 219
328 | 259
395 | 304
468 | 198
265 | 222
299 | 241
326 | 267
363 | 316
436 | 369
517 | 369
549 | | 32 | 101 | 118 | 132 | 144 | 159 | 188 | 221 | 126 | 147 | 165 | 179 | 199 | 235 | 276 | 180 | 201 | 219
| 242 | 287 | 337 | 355 | | 33 | 168 | 202 | 228 | 248 | 276 | 332 | 393 | 187 | 226 | 254 | 277 | 309 | 371 | 440 | 249 | 281 | 306 | 341 | 410 | 486 | 532 | | 34 | 92
158 | 108
190 | 121
214 | 131
233 | 145
260 | 171
312 | 201
370 | 114
176 | 134
212 | 150
239 | 163
261 | 181
290 | 214
349 | 251
414 | 164
235 | 183
265 | 199
288 | 221
321 | 261
386 | 307
458 | 334
516 | | | 84 | 98 | 110 | 120 | 132 | 156 | 184 | 105 | 122 | 137 | 149 | 165 | 195 | 229 | 149 | 167 | 182 | 202 | 239 | 280 | 314 | | 35 | 149
77 | 179
90 | 202
101 | 220
110 | 245
121 | 294
143 | 349
168 | 166
96 | 200
112 | 226
126 | 246
137 | 274
151 | 329
179 | 390
210 | 221
137 | 249
153 | 272
167 | 303
185 | 364
219 | 432
257 | 494
292 | | 36 | 141 | 169 | 191 | 208 | 232 | 278 | 330 | 157 | 189 | 213 | 232 | 259 | 311 | 369 | 209 | 236 | 257 | 286 | 344 | 408 | 467 | | 37 | 70 | 82 | 92 | 101 | 111 | 132 | 154 | 148 | 103
179 | 115
202 | 125
220 | 139
245 | 164
294 | 193
349 | 126
198 | 141
223 | 153
243 | 169
271 | 201
325 | 236
386 | 269
442 | | ٠, | | | | | | | | 81 | 95 | 106 | 115 | 128 | 151 | 178 | 116 | 130 | 141 | 156 | 185 | 217 | 247 | | 38 | | | | | | | | 141 | 170 | 191 | 208 | 232 | 279 | 331 | 187 | 211 | 230 | 256 | 308 | 366 | 419
228 | | 39 | | | | | 4 | | | 74
133 | 87
161 | 98
181 | 106
198 | 118
220 | 139
265 | 164
314 | 107
178 | 119
200 | 130
218 | 144
243 | 170
292 | 200
347 | 397 | | 40 | | | | | | | | 69 | 81 | 90 | 98 | 109 | 129 | 151 | 98 | 110 | 120 | 133 | 157 | 185 | 211 | | 40 | | | | | | | | 127
64 | 153
75 | 172
84 | 188
91 | 209
101 | 251
119 | 298
140 | 169
91 | 190
102 | 207
111 | 231
123 | 278
146 | 330
171 | 377
195 | | 41 | | | | | 47 | | | | | | | | | | 161 | 181 | 197 | 220 | 264 | 314 | 359 | | 42 | | 1 | | | | | | | | | | | | | 85
153 | 95
173 | 103
188 | 114
209 | 135
252 | 159
299 | 181
342 | | | | | | | | | | | | | | | | | 79 | 88 | 96 | 106 | 126 | 148 | 168 | | 43 | | | | | | | | | | | | | | | 146
73 | 165
82 | 179
89 | 200 | 240 | 285
138 | 326
157 | | 44 | | | | | | | | | | | | | | | 73
139 | 157 | 171 | 99
191 | 117
229 | 272 | 311 | | | | | | | | | | | | | | | | | 68 | 76 | 83 | 92 | 109 | 128 | 146 | | | | Rasad | | | | | | | TEEL JO
wn In Po | , | | · Foot (n | If\ | | | |--------------------------|------------|------------|------------|------------|--------------------------|------------|------------|--------------------|---------------------|------------|------------|------------|------------|------------|------------| | Joist
Designation | 24K4 | 24K5 | 24K6 | 24K7 | 24K8 | 24K9 | 24K10 | 24K12 | 26K5 | 26K6 | 26K7 | 26K8 | 26K9 | 26K10 | 26K12 | | Designation Depth (In.) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | Approx. Wt. | 7.8 | 7.9 | 8.5 | 9.0 | 9.4 | 10.3 | 11.7 | 13.5 | 8.1 | 8.6 | 9.0 | 9.7 | 10.4 | 11.8 | 13.7 | | (lbs./ft.)
Span (ft.) | | | | | | | | | | | | | | | | | 1 1 1 | | | | | | | | | | | | | | | | | 23 | 550
550 | | | | • | | | | 24 | 520 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | 25 | 516
479 | 544
540 | 544
550 | 544
550 | 544
550 | 544
550 | 544
550 | 544
550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | 456 | 511 | 520 | 520 | 520 | 520 | 520 | 520 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | 26 | 442
405 | 499
453 | 543
493 | 550
499 | 550
499 | 550
499 | 550
499 | 550
499 | 542
535 | 550
541 | 550
541 | 550
541 | 550
541 | 550
541 | 550
541 | | 27 | 410 | 462 | 503 | 550 | 550 | 550 | 550 | 550 | 502 | 547 | 550 | 550 | 550 | 550 | 550 | | 28 | 361
381 | 404
429 | 439
467 | 479
521 | 479
550 | 479
550 | 479
550 | 479
550 | 477
466 | 519
508 | 522
550 | 522
550 | 522
550 | 522
550 | 522
550 | | 20 | 323 | 362 | 393 | 436 | 456 | 456 | 456 | 456 | 427 | 464 | 500
501 | 501 | 501 | 501 | 501 | | 29 | 354 | 400 | 435 | 485 | 536 | 550 | 550 | 550 | 434 | 473 | 527 | 550 | 550 | 550 | 550 | | 30 | 290
331 | 325
373 | 354
406 | 392
453 | 429
500 | 436
544 | 436
550 | 436
550 | 384
405 | 417
441 | 463
492 | 479
544 | 479
550 | 479
550 | 479
550 | | | 262 | 293 | 319 | 353 | 387 | 419 | 422 | 422 | 346 | 377 | 417 | 457 | 459 | 459 | 459 | | 31 | 310
237 | 349
266 | 380
289 | 424
320 | 468
350 | 510
379 | 550
410 | 550
410 | 379
314 | 413
341 | 460
378 | 509
413 | 550
444 | 550
444 | 550
444 | | 32 | 290 | 327 | 357 | 397 | 439 | 478 | 549 | 549 | 356 | 387 | 432 | 477 | 519 | 549 | 549 | | | 215 | 241 | 262 | 290 | 318 | 344 | 393 | 393 | 285 | 309 | 343 | 375 | 407 | 431 | 431 | | 33 | 273
196 | 308
220 | 335
239 | 373
265 | 413
289 | 449
313 | 532
368 | 532
368 | 334
259 | 364
282 | 406
312 | 448
342 | 488
370 | 532
404 | 532
404 | | 34 | 257 | 290 | 315 | 351 | 388 | 423 | 502 | 516 | 315 | 343 | 382 | 422 | 459 | 516 | 516 | | 35 | 179
242 | 201
273 | 218
297 | 242
331 | 264
366 | 286
399 | 337
473 | 344
501 | 237
297 | 257
323 | 285
360 | 312
398 | 338
433 | 378
501 | 378
501 | | 33 | 164 | 184 | 200 | 221 | 242 | 262 | 308 | 324 | 217 | 236 | 261 | 286 | 310 | 356 | 356 | | 36 | 229 | 258 | 281 | 313 | 346 | 377 | 447 | 487 | 280 | 305 | 340 | 376 | 409 | 486 | 487 | | 37 | 150
216 | 169
244 | 183
266 | 203
296 | 222
327 | 241
356 | 283
423 | 306
474 | 199
265 | 216
289 | 240
322 | 263
356 | 284
387 | 334
460 | 334
474 | | 38 | 138
205 | 155
231 | 169
252 | 187
281 | 2 <mark>05</mark>
310 | 222
338 | 260
401 | 290 | 183
251 | 199
274 | 221
305 | 242
337 | 262
367 | 308
436 | 315
461 | | 36 | 128 | 143 | 156 | 172 | 189 | 204 | 240 | 461
275 | 169 | 184 | 204 | 223 | 241 | 284 | 299 | | 39 | 195
118 | 219
132 | 239
144 | 266
159 | 294
174 | 320
189 | 380
222 | 449
26 1 | 238
156 | 260
170 | 289
188 | 320
206 | 348
223 | 413
262 | 449
283 | | 40 | 185 | 208 | 227 | 253 | 280 | 304 | 361 | 438 | 227 | 247 | 275 | 304 | 331 | 393 | 438 | | 41 | 109
176 | 122
198 | 133
216 | 148
241 | 161
266 | 175
290 | 206
344 | 247
427 | 145
215 | 157
235 | 174
262 | 191
289 | 207
315 | 243
374 | 269
427 | | | 101 | 114 | 124 | 137 | 150 | 162 | 191 | 235 | 134 | 146 | 162 | 177 | 192 | 225 | 256 | | 42 | 168
94 | 189
106 | 206
115 | 229
127 | 253
139 | 276
151 | 327
177 | 417
224 | 205
125 | 224
136 | 249
150 | 275
164 | 300
178 | 356
210 | 417
244 | | 43 | 160 | 180 | 196 | 219 | 242 | 263 | 312 | 406 | 196 | 213 | 238 | 263 | 286 | 339 | 407 | | 44 | 88
153 | 98
172 | 107
187 | 118
209 | 130
231 | 140
251 | 165
298 | 213
387 | 116
187 | 126
204 | 140
227 | 153
251 | 166
273 | 195
324 | 232
398 | | 44 | 82 | 92 | 100 | 110 | 121 | 131 | 154 | 199 | 108 | 204
118 | 131 | 143 | 155 | 182 | 222 | | 45 | 146
76 | 164
86 | 179
93 | 199
103 | 220
113 | 240
122 | 285
144 | 370
185 | 179
101 | 194
110 | 217
122 | 240
133 | 261
145 | 310
170 | 389
212 | | 46 | 139 | 157 | 171 | 191 | 211 | 230 | 272 | 354 | 171 | 186 | 207 | 229 | 250 | 296 | 380 | | 47 | 71
133 | 80
150 | 87
164 | 97
183 | 106
202 | 114
220 | 135
261 | 174
339 | 95
164 | 103
178 | 114
199 | 125
219 | 135
239 | 159
284 | 203
369 | | 48 | 67
128 | 75
144 | 82
457 | 90
175 | 99
194 | 107 | 126 | 163 | 89
157 | 96
171 | 107 | 117 | 127
229 | 149
272 | 192 | | 40 | 63 | 70 | 157
77 | 175
85 | 194
93 | 211
101 | 250
118 | 325
153 | 157
83 | 171
90 | 190
100 | 210
110 | 119 | 140 | 353
180 | | 49 | | | | | | | | | 150
78 | 164
85 | 183
94 | 202
103 | 220
112 | 261
131 | 339
169 | | 50 | | | | | | | | | 144 | 157 | 175 | 194 | 211 | 250 | 325 | | 51 | | | | | | | | | 73
139 | 80
151 | 89
168 | 97
186 | 105
203 | 124
241 | 159
313 | | | | | | | | | | | 69 | 75 | 83 | 91 | 99 | 116 | 150 | | 52 | | | | | | | | | 133
65 | 145
71 | 162
79 | 179
86 | 195
93 | 231
110 | 301
142 | | | | | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | | 00 | | 10 | - 00 | - 00 | 110 | 174 | | | B | | | | | | B STEEL J
Shown In | | | Foot (nlf) | | | |----------------------------|-----------------------|--------------------------|------------|------------|------------|------------|-----------------------|------------|-------------|------------|------------|------------| | Joist
Designation | 28K6 | 28K7 | 28K8 | 28K9 | 28K10 | 28K12 | 30K7 | 30K8 | 30K9 | 30K10 | 30K11 | 30K12 | | Designation
Depth (In.) | 28 | 28 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 | 30 | 30 | | Approx. Wt. | 8.9 | 9.2 | 9.8 | 10.5 | 11.8 | 14.5 | 9.6 | 10.0 | 10.6 | 11.9 | 13.3 | 15.0 | | (lbs./ft.)
Span (ft.) | | | | | | | | | | | | | | 27 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | 21 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | 28 | 548 | 550 | 550 | 550 | 550 | 550 | | | | | | | | 29 | 541
511 | 543
550 | 543
550 | 543
550 | 543
550 | 543
550 | 550 | 550 | 550 | 550 | 550 | 550 | | - | 486 | 522 | 522 | 522 | 522 | 522 | 550 | 550 | 550 | 550 | 550 | 550 | | 30 | 477
439 | 531
486 | 550
500 | 550
500 | 550
500 | 550
500 | 550
543 | 550
543 | 550
543 | 550
543 | 550
543 | 550
543 | | 31 | 446 | 497 | 550 | 550
 550 | 550 | 534 | 550 | 550 | 550 | 550 | 550 | | 32 | 397
418 | 440
466 | 480
515 | 480
549 | 480
549 | 480
549 | 508
501 | 520
549 | 520
549 | 520
549 | 520
549 | 520
549 | | 32 | 361 | 400 | 438 | 463 | 463 | 463 | 461 | 500 | 50 <u>0</u> | 500 | 500 | 500 | | 33 | 393 | 438 | 484 | 527 | 532 | 532 | 471 | 520 | 532 | 532 | 532 | 532 | | 34 | 329
370 | 364
412 | 399
456 | 432
496 | 435
516 | 435
516 | 420
443 | 460
490 | 468
516 | 468
516 | 468
516 | 468
516 | | | 300 | 333 | 364 | 395 | 410 | 410 | 384 | 420 | 441 | 441 | 441 | 441 | | 35 | 349
275 | 389
305 | 430
333 | 468
361 | 501
389 | 501
389 | 418
351 | 462
384 | 501
415 | 501
415 | 501
415 | 501
415 | | 36 | 330 | 367 | 406 | 442 | 487 | 487 | 395 | 436 | 475 | 487 | 487 | 487 | | 37 | 252
312 | 280
348 | 306
384 | 332
418 | 366
474 | 366
474 | 323
373 | 353
413 | 383
449 | 392
474 | 392
474 | 392
474 | | 31 | 232 | 257 | 282 | 305 | 344 | 344 | 297 | 325 | 352 | 374 | 374 | 374 | | 38 | 296 | 329 | 364 | 396 | 461 | 461 | 354 | 391 | 426 | 461 | 461 | 461 | | 39 | 214
280 | 237
313 | 260
346 | 282
376 | 325
447 | 325
449 | 274
336 | 300
371 | 325
404 | 353
449 | 353
449 | 353
449 | | | 198 | 219 | 240 | 260 | 306 | 308 | 253 | 277 | 300 | 333 | 333 | 333 | | 40 | 266
183 | 297
203 | 328
222 | 357
241 | 424
284 | 438
291 | 319
234 | 353
256 | 384
278 | 438
315 | 438
315 | 438
315 | | 41 | 253 | 283 | 312 | 340 | 404 | 427 | 303 | 335 | 365 | 427 | 427 | 427 | | 42 | 170
241 | 189
269 | 206
297 | 224
324 | 263
384 | 277
417 | 217
289 | 238
320 | 258
348 | 300
413 | 300
417 | 300
417 | | 42 | 158 | 269
175 | 192 | 208 | 245 | 264 | 202 | 221 | 240 | 282 | 284 | 284 | | 43 | 230 | 257 | 284 | 309 | 367 | 407 | 276 | 305 | 332 | 394 | 407 | 407 | | 44 | 147
220 | 163
245 | 179
271 | 194
295 | 228
350 | 252
398 | 188
263 | 206
291 | 223
317 | 263
376 | 270
398 | 270
398 | | | 137 | 152 | 167 | 181 | 212 | 240 | 176 | 192 | 208 | 245 | 258 | 258 | | 45 | 210
128 | 234
142 | 259
156 | 282
169 | 334
198 | 389
229 | 251
164 | 278
179 | 303
195 | 359
229 | 389
246 | 389
246 | | 46 | 201 | 224 | 248 | 270 | 320 | 380 | 241 | 266 | 290 | 344 | 380 | 380 | | 47 | 120
192 | 133
214 | 146
237 | 158
258 | 186
306 | 219
372 | 153
230 | 168
255 | 182
277 | 214
329 | 236
372 | 236
372 | | 41 | 112 | 125 | 136 | 148 | 174 | 210 | 144 | 157 | 171 | 201 | 226 | 226 | | 48 | 184 | 206 | 227 | 247 | 294 | 365 | 221 | 244 | 266 | 315 | 362 | 365 | | 49 | 105
177 | 11 <mark>7</mark>
197 | 128
218 | 139
237 | 163
282 | 201
357 | 135
212 | 148
234 | 160
255 | 188
303 | 215
347 | 216
357 | | | 99 | 110 | 120 | 130 | 153 | 193 | 127 | 139 | 150 | 177 | 202 | 207 | | 50 | 170
93 | 189
103 | 209
113 | 228
123 | 270
144 | 350
185 | 203
119 | 225
130 | 245
141 | 291
166 | 333
190 | 350
199 | | 51 | 163 | 182 | 201 | 219 | 260 | 338 | 195 | 216 | 235 | 279 | 320 | 343 | | 52 | 88
157 | 97
175 | 106
193 | 115
210 | 136
250 | 175
325 | 112
188 | 123
208 | 133
226 | 157
268 | 179
308 | 192
336 | | | 83 | 92 | 100 | 109 | 128 | 165 | 106 | 116 | 126 | 148 | 169 | 184 | | 53 | 151 | 168 | 186
95 | 203 | 240 | 313 | 181 | 200 | 218 | 258 | 296 | 330 | | 54 | 78
145 | 87
162 | 179 | 103
195 | 121
232 | 156
301 | 100
174 | 109
192 | 119
209 | 140
249 | 159
285 | 177
324 | | | 74 | 82 | 89 | 97 | 114 | 147 | 94 | 103 | 112 | 132 | 150 | 170 | | 55 | 140
70 | 156
77 | 173
85 | 188
92 | 223
108 | 290
139 | 168
89 | 185
98 | 202
106 | 240
125 | 275
142 | 312
161 | | 56 | 135 | 151 | 166 | 181 | 215 | 280 | 162 | 179 | 195 | 231 | 265 | 301 | | 57 | 66 | 73 | 80 | 87 | 102 | 132 | 84
156 | 92
173 | 100
188 | 118
223 | 135
256 | 153
290 | | 31 | | | | | | | 80 | 88 | 95 | 112 | 128 | 145 | | 58 | | | | | | | 151 | 167 | 181 | 215 | 247 | 280 | | 59 | | | | | | | 76
146 | 83
161 | 90
175 | 106
208 | 121
239 | 137
271 | | | | | | | | | 72 | 79 | 86 | 101 | 115 | 130 | | 60 | | | | | | | 141
69 | 156
75 | 169
81 | 201
96 | 231
109 | 262
124 | # STANDARD LRFD LOAD TABLE #### **FOR KCS JOISTS** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010 The figures in the following table give the Moment Capacity (kip-in.) and Shear Capacity (lbs). The maximum uniformly distributed load capacity in LRFD shall not exceed 825 plf and a single concentrated load cannot exceed the shear capacity. Sloped parallel-chord KCS Joists shall use the appropriate moment and shear capacity for the span as defined by the length along the slope. The approximate KCS Joist weights per linear foot shown in this table do not include accessories. The **KCS** Joist designation is not used to establish bridging requirements. The Bridging Table Section Numbers given in the **KCS** Standard Load Table indicate the equivalent **K**-Series joist of the same depth to be used for determination of the number of bridging rows, the size of horizontal bridging, and the need for erection stability bridging. While the need for erection stability bridging (diagonal bridging with bolted connections at the chords and intersections), can be determined from the **RED** shaded portion of the Standard Load Table, Open Web Steel Joists, **K**-Series, for convenience the **KCS** Load Table also includes a column for erection stability bridging. Where the span of the **KCS** Joist designation exceeds the length in ft. listed, the row of bridging nearest the joist midspan shall be erection stability bridging. Where "NA" is listed in the column, the **KCS** Joist designation does not require bolted diagonal erection bridging regardless of span. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel Joists and Joist Girders. #### STANDARD LOAD TABLE FOR KCS OPEN WEB STEEL JOISTS Based on a 50 ksi Maximum Yield Strength **GROSS** ERECTION BRIDGING APPROX. **MOMENT** SHEAR **DEPTH JOIST TABLE MOMENT OF STABILITY** CAPACITY CAPACITY* **WEIGHT** DESIGNATION** (in.) **BRIDGING SECTION INERTIA** (k-in.) (lbs) (lbs/ft.) REQ'D (ft.) NUMBER (in.⁴) 10KCS1 10 258 3000 6.0 29 NA 37 10 337 3750 7.5 NA 10KCS2 47 10KCS3 10 444 4500 10.0 NA 1 43 12KCS1 12 313 3600 6.0 NA 3 12KCS2 12 411 4500 8.0 55 NA 5 12KCS3 71 5 12 543 5250 10.0 NA 14KCS1 14 370 4350 6.5 59 NA 4 14KCS2 14 486 5100 8.0 77 NA 6 14KCS3 14 642 5850 10.0 99 NA 6 16KCS2 16 523 6000 8.5 99 NA 6 9 **16KCS3** 16 705 7200 10.5 128 NA 16KCS4 16 1080 7950 14.5 192 9 NA 16KCS5 16 1401 8700 245 NA 9 18.0 18KCS2 18 592 7050 9.0 127 35-0 6 **18KCS3** 18 798 7800 11.0 164 NA 9 18KCS4 18 1225 8550 15.0 247 NA 10 18KCS5 18 1593 9300 18.5 316 NA 10 20 663 7800 9.5 159 36-0 6 20KCS2 39-0 **20KCS3** 20 892 9000 11.5 205 9 20KCS4 20 1371 11850 16.5 308 NA 10 **20KCS5** 20 1786 12600 20.0 396 NA 10 22 732 10.0 194 36-0 6 8850 **22KCS2** 22 987 9900 12.5 251 40-0 9 **22KCS3** 22 16.5 1518 11850 377 NA 22KCS4 11 **22KCS5** 22 1978 12900 20.5 485 NA 11 24 801 9450 10.0 232 39-0 6 **24KCS2** 24 301 44-0 24KCS3 1080 10800 12.5 9 24 16.5 1662 12600 453 NA 12 24KCS4 24 2172 13350 20.5 584 NA 12 **24KCS5** 26KCS2 26 870 9900 10.0 274 39-0 6 **26KCS3** 26 1174 11700 12.5 355 44-0 9 26 26KCS4 1809 12750 16.5 536 NA 12 26 13800 2364 20.5 691 NA 12 **26KCS5** 28 939 10350 10.5 320 40-0 6 **28KCS2** 45-0 **28KCS3** 28 1269 12000 12.5 414 9 28 1954 12750 16.5 626 53-0 12 28KCS4 28 2556 13800 **28KCS5** 20.5 808 53-0 12 30 1362 12000 13.0 478 45-0 **30KCS3** 9 30 2100 12750 16.5 722 54-0 12 30KCS4 30 2749 934 54-0 30KCS5 13800 21.0 12 ^{*}Maximum uniformly distributed load capacity is 825 plf and single concentrated load cannot exceed shear capacity **Does not include accessories # STANDARD ASD LOAD TABLE #### **FOR KCS JOISTS** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 2, 1994 Revised to May 18, 2010 – Effective December 31, 2010 The figures in the following table give the Moment Capacity (kip-in.) and Shear Capacity (lbs). The maximum uniformly distributed load capacity in ASD shall not exceed 550 plf and a single concentrated load cannot exceed the shear capacity. Sloped parallel-chord KCS Joists shall use the appropriate moment and shear capacity for the span as defined by the length along the slope. The approximate KCS Joist weights per linear foot shown in the table do not include accessories. The KCS Joist designation is not used to establish bridging requirements. The Bridging Table Section Numbers given in the KCS Standard Load Table indicate the equivalent K-Series joist of the same depth to be used for determination of the number of bridging rows, the size of horizontal bridging, and the need for erection stability bridging. While the need for erection stability bridging (diagonal bridging with bolted connections at the chords and intersections), can be determined from the RED shaded portion of the Standard Load Table, Open Web Steel Joists, K-Series, for convenience the KCS Load Table also includes a column for erection stability bridging. Where the span of the KCS Joist designation exceeds the length in ft. listed, the row of bridging nearest the joist midspan shall be erection stability bridging. Where "NA" is listed in the column, the KCS Joist designation does not require bolted diagonal erection bridging regardless of span. For the proper handling of concentrated and/or varying loads, see Section 2.3 in the Code of Standard Practice for Steel
Joists and Joist Girders. #### STANDARD LOAD TABLE FOR KCS OPEN WEB STEEL JOISTS Based on a 50 ksi Maximum Yield Strength BRIDGING **GROSS ERECTION MOMENT SHEAR** APPROX. **DEPTH JOIST MOMENT OF STABILITY TABLE WEIGHT**** CAPACITY CAPACITY* **DESIGNATION** (in.) **INERTIA BRIDGING** SECTION (k-in.) (lbs) (lbs/ft.) REQ'D (ft.) NUMBER (in.4) 2000 10KCS1 10 172 6.0 29 NA 10KCS2 10 225 2500 7.5 37 NA 47 10KCS3 296 3000 10.0 1 10 NA 12 209 6.0 43 12KCS1 2400 NA 3 55 5 **12KCS2** 12 274 3000 8.0 NA 12 3500 10.0 71 5 **12KCS3** 362 NA 14 14KCS1 247 2900 6.5 59 NA 4 14KCS2 14 324 3400 8.0 77 NA 6 428 3900 10.0 99 6 **14KCS3** 14 NA 16 4000 NA 6 16KCS2 349 8.5 99 16 470 4800 10.5 128 NA 9 **16KCS3** 5300 192 9 16KCS4 16 720 14.5 NA 9 **16KCS5** 16 934 5800 18.0 245 NA 18KCS2 18 395 4700 9.0 127 35-0 6 9 18 532 5200 11.0 164 NA **18KCS3 18KCS4** 18 817 5700 15.0 247 NA 10 1062 18.5 **18KCS5** 18 6200 316 NA 10 20 442 5200 159 36-0 6 20KCS2 9.5 20 595 11.5 205 39-0 9 20KCS3 6000 20KCS4 20 914 7900 16.5 308 NA 10 396 **20KCS5** 20 1191 8400 20.0 10 NA 22 488 5900 10.0 194 36-0 6 22KCS2 22 12.5 251 40-0 9 **22KCS3** 658 6600 16.5 **22KCS4** 22 1012 7900 377 NA 11 22 485 **22KCS5** 1319 8600 20.5 NA 11 24KCS2 24 534 6300 10.0 232 39-0 6 24 720 7200 12.5 301 9 44-0 24KCS3 24 1108 8400 16.5 453 NA 12 24KCS4 24 1448 8900 12 **24KCS5** 20.5 584 NA 26KCS2 26 580 6600 10.0 274 39-0 6 783 7800 12.5 355 44-0 9 **26KCS3** 26 **26KCS4** 26 1206 8500 16.5 536 NA 12 26 9200 20.5 691 12 **26KCS5** 1576 NA 28KCS2 28 626 6900 10.5 320 40-0 6 28 8000 12.5 414 45-0 9 **28KCS3** 846 28KCS4 28 1303 8500 16.5 626 53-0 12 28 1704 9200 808 12 **28KCS5** 20.5 53-0 **30KCS3** 30 908 8000 13.0 478 45-0 9 30 1400 8500 16.5 722 54-0 12 30KCS4 30 1833 9200 21.0 934 54-0 12 30KCS5 ^{*}Maximum uniformly distributed load capacity is 550 plf and single concentrated load cannot exceed shear capacity **Does not include accessories #### JOIST SUBSTITUTES K SERIES Joist substitutes are 2.5 inch (64 mm) deep sections intended for use in very short spans (less than 8 feet (2.4 m) where Open Web Steel Joists are impractical. They are commonly specified to span over hallways and short spans in skewed bays. Joist substitutes are fabricated from material conforming to Steel Joist Institute Specifications. Full lateral support to the compressive flange is provided by attachments to the deck. Caution must be exercised during erection since joist substitutes exhibit some degree of instability. After erection and before loads of any description are placed on the joist substitutes, the ends must be attached to the supports per SJI K- Series specifications and the deck installed and attached to the top flange. Tables below list uniform loads based on LRFD and ASD methods of design and listed in U.S. Customary units: | L | OAD TABLES I | FOR 2.5 IN | CH SIMPL | E SPAN | |---|----------------|------------|------------|----------| | | JOIST SU | BSTITUTES | S, K-SERIE | S | | | Based on a Max | imum Yield | Strength o | f 50 ksi | | D | esignation | 2.5K1 | 2.5K2 | 2.5K3 | | S | pan (ft-in) | Pounds | s per Lin | ear foot | | | 4'-0" | 825 | 825 | 825 | | | 5'-0" | 825 | 825 | 825 | | | 6'-0" | 579 | 804 | 825 | | | 7'-0" | 418 | 580 | 810 | | | 8'-0" | 316 | 439 | 612 | | | 9'-0" | 0 | 343 | 480 | | | 10'-0" | 0 | 0 | 385 | # ASD | LOAD TABLES FOR 2.5 INCH SIMPLE SPAN | | | | | | | | | | | | |--|-------------|---------------|---------|--|--|--|--|--|--|--|--| | JOIST SUBSTITUTES, K-SERIES Based on a Maximum Yield Strength of 50 ksi | | | | | | | | | | | | | Based on a Maxir | num Yield S | Strength of 5 | 50 ksi | | | | | | | | | | Designation | 2.5K1 | 2.5K2 | 2.5K3 | | | | | | | | | | Span (ft-in) | Pounds | per Line | ar Foot | | | | | | | | | | 4'-0" | 550 | 550 | 550 | | | | | | | | | | 5'-0" | 550 | 550 | 550 | | | | | | | | | | 6'-0" | 386 | 536 | 550 | | | | | | | | | | 7'-0" | 279 | 387 | 540 | | | | | | | | | | 8'-0" | 211 | 293 | 408 | | | | | | | | | | 9'-0" | 0 | 229 | 320 | | | | | | | | | | 10'-0" | 0 | 0 | 257 | | | | | | | | | #### **FABRICATION** Depth Maximum Length Minimum Length 3 ft Contact your local Vulcraft plant for sloped or pitched seat information. #### 2.5K JOIST SUBSTITUTE PROPERTIES | 2.5K TYPE | 2.5K1 | 2.5K2 | 2.5K3 | |-----------------------------|-------|-------|-------| | S in ³ | 0.62 | 0.86 | 1.20 | | I in⁴ | 0.77 | 1.07 | 1.50 | | Approximate weight (lbs/ft) | 3.0 | 4.2 | 6.4 | NOTE: 2.5K SERIES NOT U.L. APPROVED. NOTE: 2.5K SERIES NOT U.L. APPROVED. | _ | _ | | |---|---|--| | | | | | | | | | | | | | | | | | LOAD TABLES FOR 2.5 INCH JOIST OUTRIGGERS, K-SERIES | | | | | | | | | | | | | |---|-------|---|-------|-------|-------|-------|-------|-------|-------|--|--|--| | | | TOTAL ALLOWABLE LOAD FOR UNSUPPORTED CANTILEVER | | | | | | | | | | | | | \ | | | | PLF | | | | | | | | | OUTRIGGER | | SPAN ft-in | | | | | | | | | | | | TYPE | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | | | | 2.5K1 | 825 | 744 | 516 | 379 | 291 | 229 | 186 | 153 | 129 | | | | | 2.5K2 | 825 | 825 | 717 | 526 | 403 | 318 | 258 | 213 | 179 | | | | | 2.5K3 | 825 | 825 | 825 | 735 | 562 | 444 | 360 | 297 | 250 | | | | | | LOAD TABLES FOR 2.5 INCH JOIST OUTRIGGERS, K-SERIES | | | | | | | | | | | | |-----------|---|---|-------|-------|-------|-------|-------|-------|-------|--|--|--| | | | TOTAL ALLOWABLE LOAD FOR UNSUPPORTED CANTILEVER | | | | | | | | | | | | | | PLF | | | | | | | | | | | | OUTRIGGER | R SPAN ft-in | | | | | | | | | | | | | TYPE | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | | | | 2.5K1 | 550 | 496 | 344 | 253 | 194 | 153 | 124 | 102 | 86 | | | | | 2.5K2 | 550 | 550 | 478 | 351 | 269 | 212 | 172 | 142 | 119 | | | | | 2.5K3 | 550 | 550 | 550 | 490 | 375 | 296 | 240 | 198 | 167 | | | | $^{{}^\}star Service ability$ requirements must be checked by the specifying professional. # STANDARD ASD LOAD TABLE STANDARD LRFD LOAD TABLE FOR TOP CHORD EXTENSIONS (S TYPE) and (R TYPE) Based on a 50 ksi Maximum Yield Strength ASD Load Table adopted by the Steel Joist Institute November 15, 1989 LRFD Load Table adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010 Joist extensions are commonly furnished to support a variety of overhang conditions. Two types are pictured below. The first is the <u>TOP CHORD EXTENSION</u> or <u>"S" TYPE</u>, which has only the top chord angles extended. The second is the <u>EXTENDED END</u> or <u>"R" TYPE</u> in which the standard 2½, (64 mm) end bearing depth is maintained over the entire length of the extension. The "S" TYPE extension is so designated because of its <u>Simple nature whereas the "R" TYPE involves Reinforcing</u> the top chord angles. The **specifying professional** should be aware that an "S" TYPE is more economical and should be specified whenever possible. The following load tables are for K-Series TOP CHORD EXTENSIONS and EXTENDED ENDS for ASD and LRFD methods of design. The tabulated values are the maximum allowable uniform load in pounds per linear foot (kiloNewton/meter). The "S" and "I" numbers shown in the load tables are the Elastic Section Modulus and Moment of Inertia of the extension (Section) number with which they are associated. In cases where it is not possible to meet specific job requirements with a 2½" (64 mm) deep "R" type extension (refer to "S" and "I" values in the Extended End Load Table), the depth of the extension must be increased to provide greater load-carrying capacity. The "S" and "R" extension numbers are intended to be associated with Standard K-Series Joist Sizes of matching Section Number. When possible, the extension number should be limited to no more than the Standard K-Series Joist Section Number, for optimum economy. When TOP CHORD EXTENSIONS or EXTENDED ENDS are specified the bracing requirements must be considered by the specifying professional. It should be noted that an "R" TYPE extension must be specified when building details dictate a 2½, (64 mm) depth at the end of the extension. In the absence of specific instructions, the joist manufacturer may provide either type. #### TOP CHORD EXTENSION #### **EXTENDED END** W = Uniform Load L1= Length of Extension SPAN = See K-Series Standard Specification for Definition of Span # TOP CHORD EXTENSION LOAD TABLE (R TYPE) Based on a Yield Strength of 50 ksi Pounds Per Linear Foot | | Pounds Per Linear Foot | | | | | | | | | | | | | | |------|------------------------|---------------------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------| | | "S" | "Į" | | | | | | LENGT | 1 (L1) | | | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2*-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | R1 | 0.895 | 1.119 | 550 | 550 | 550 | 550 | 550 | 446 | 332 | 257 | 205 | 167 | 139 | 117 | | R2 | 0.923 | 1.157 | 550 | 550 | 550 | 550 | 550 | 460 | 343 | 266 | 212 | 173 | 144 | 121 | | R3 | 1.039 | 1.299 | 550 | 550 | 550 | 550 | 550 | 518 | 386 | 299 | 239 | 195 | 162 | 137 | | R4 | 1.147 | 1.433 | 550 | 550 | 550 | 550 | 550 | 550 | 426 | 330 | 263 | 214 | 178 | 150 | | R5 | 1.249 | 1.561 | 550 | 550 | 550 | 550 | 550 | 550 | 464 | 359 | 286 | 233 | 194 | 164 | | R6 | 1.352 | 1.690 | 550 | 550 | 550 | 550 | 550 | 550 | 502 | 389 | 310 | 253 | 210 | 177 | | R7 | 1.422 | 1.802 | 550 | 550 | 550 | 550 | 550 | 550 | 528 | 409 | 326 | 266 | 221 | 186 | | R8 | 1.558 | 1.948 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 448 | 357 | 291 | 242 | 204 | | R9 | 1.673 | 2.091 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 481 | 384 | 313 | 260 | 219 | | R10 | 1.931 | 2.414 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 |
443 | 361 | 300 | 253 | | R11 | 2.183 | 2.729 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 501 | 408 | 339 | 287 | | R12 | 2.413 | 3.016 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 451 | 375 | 317 | | TOP CHORD EXTENSION LOAD TABLE (S TYPE) | | | | | | | | | | | | | | | |---|---------------------|---------------------|-------|-----|----------|-----|---------|--------|-----|-----|-----|--|--|--| Based | | aximum | | | 50 KSI | | | | | | | | \vdash | "S" | " " | | Po | unds Per | | NGTH (L | 1) | | | | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | | | | | | | | | | | | | | - | | | | | | 2 -0 | 3-0 | 3-0 | 4-0 | 4-0 | | | | | S1 | 0.099 | 0.088 | 550 | 363 | 178 | 105 | | | | | | | | | | S2 | 0.127 | 0.138 | 550 | 467 | 229 | 135 | | | | | | | | | | 53 | 0.144 | 0,156 | 550 | 529 | 259 | 153 | | | | | | | | | | S4 | 0.160 | 0.172 | 550 | 550 | 288 | 170 | 112 | | | | | | | | | S5 | 0.176 | 0.188 | 550 | 550 | 316 | 187 | 123 | | | | | | | | | S6 | 0.192 | 0.204 | 550 | 550 | 345 | 204 | 135 | | | | | | | | | S7 | 0.241 | 0.306 | 550 | 550 | 433 | 256 | 169 | 120 | | | | | | | | S8 | 0.266 | 0.332 | 550 | 550 | 478 | 283 | 187 | 132 | | | | | | | | S9 | 0.288 | 0.358 | 550 | 550 | 518 | 306 | 202 | 143 | 107 | | | | | | | S10 | 0.380 | 0.544 | 550 | 550 | 550 | 404 | 267 | 189 | 141 | 109 | | | | | | S11 | 0.438 | 0.622 | 550 | 550 | 550 | 466 | 307 | 218 | 162 | 126 | 100 | | | | | S12 | 0.494 | 0.696 | 550 | 550 | 550 | 526 | 347 | 246 | 183 | 142 | 113 | | | | | | TOP CHORD EXTENSION LOAD TABLE (R TYPE)
Based on a Yield Strength of 50 ksi
Pounds Per Linear Foot | | | | | | | | | | | | | | |------|--|---------------------|-------|-------------|-------------|-------|-------|-------|-------------|-------|-------|-------|-------|-------| | | "S" "!" LENGTH (L1) | | | | | | | | | | | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | R1 | 0.895 | 1.119 | 825 | 82 5 | 825 | 825 | 825 | 669 | 49 8 | 385 | 307 | 250 | 208 | 175 | | R2 | 0.923 | 1.157 | 825 | 825 | 825 | 825 | 825 | 690 | 514 | 399 | 318 | 259 | 216 | 181 | | R3 | 1.039 | 1.299 | 825 | 825 | 825 | 825 | 825 | 777 | 579 | 448 | 358 | 292 | 243 | 205 | | R4 | 1.147 | 1.433 | 825 | 82 5 | 825 | 825 | 825 | 825 | 639 | 495 | 394 | 321 | 267 | 225 | | R5 | 1.249 | 1.561 | 825 | 82 5 | 825 | 825 | 825 | 825 | 696 | 538 | 429 | 349 | 291 | 246 | | R6 | 1.352 | 1.690 | 825 | 825 | 82 5 | 825 | 825 | 825 | 753 | 583 | 465 | 379 | 315 | 265 | | R7 | 1.422 | 1.802 | 825 | 825 | 825 | 825 | 825 | 825 | 792 | 613 | 489 | 399 | 331 | 279 | | R8 | 1.558 | 1.948 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 672 | 535 | 436 | 363 | 306 | | R9 | 1.673 | 2.091 | 825 | 82 5 | 825 | 825 | 825 | 825 | 825 | 721 | 576 | 469 | 390 | 328 | | R10 | 1.931 | 2.414 | 825 | 82 5 | 825 | 825 | 825 | 825 | 825 | 825 | 664 | 541 | 450 | 379 | | R11 | 2.183 | 2.729 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 751 | 612 | 508 | 430 | | R12 | 2.413 | 3.016 | 825 | 825 | 825 | 825 | 825 | 825 | 82 5 | 825 | 825 | 676 | 562 | 475 | | | TOP CHORD EXTENSION LOAD TABLE (\$ TYPE) Based on a Yield Strength of 50 ksi | | | | | | | | | | | | | | |---|---|---------------------|---------------------|-------|-------|-------|-------------|----------|-------|-------|-------|-------|---|--| | | | | | | | | Pounds | Per Line | | | | | | | | | | "S" | "]" | | | | | | LENGT | | | | ı | | | 1 | YPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | | | | | S1 | 0.099 | 0.088 | 825 | 544 | 267 | 157 | | | | | | | | | | S2 | 0.127 | 0.138 | 825 | 700 | 343 | 202 | | | | | | | | | | S3 | 0.144 | 0.156 | 825 | 793 | 388 | 229 | | | | | | | | | | S4 | 0.160 | 0.172 | 825 | 825 | 432 | 255 | 168 | | | | | | | | | S5 | 0.176 | 0.188 | 825 | 825 | 474 | 280 | 184 | | | | | | | | | S6 | 0.192 | 0.204 | 825 | 825 | 517 | 306 | 202 | | | | | | | | | S7 | 0.241 | 0.306 | 825 | 825 | 649 | 384 | 253 | 180 | | | | | | | | S8 | 0.266 | 0.332 | 825 | 825 | 717 | 424 | 280 | 198 | | | | | | | | S9 | 0.288 | 0.358 | 825 | 825 | 777 | 4 59 | 303 | 214 | 160 | | | | | | | S10 | 0.380 | 0.544 | 825 | 825 | 825 | 606 | 400 | 283 | 211 | 163 | | | | | | S11 | 0.438 | 0.622 | 825 | 825 | 825 | 699 | 460 | 327 | 243 | 189 | 150 | | | | | S12 | 0.494 | 0.696 | 825 | 825 | 825 | 789 | 520 | 369 | 274 | 213 | 169 | | | #### K SERIES OPEN WEB STEEL JOISTS ANCHORAGE TO STEEL SEE SJI SPECIFICATION 5.3 (b) AND 5.6 ANCHORAGE TO MASONARY SEE SJI SPECIFICATION 5.3 (a) AND TYPICALLY REQUIRED AT COLUMNS 5.6 **BOLTED CONNECTION*** CEILING EXTENSION **BOTTOM CHORD STRUT** **HEADERS** Note: If header does not bear at a Joist Panel Point add extra web in field as shown. EW or Panel Point by Vulcraft #### APPROXIMATE DUCT OPENING SIZES | JOIST | ROUND | SQUARE | RECTANGLE | |-----------|------------|-----------------|-----------------| | DEPTH | | | | | 10 INCHES | 5 INCHES | 4 x 4 INCHES | 3 x 7 INCHES | | 12 INCHES | 7 INCHES | 5 x 5 INCHES | 3 X 8 INCHES | | 14 INCHES | 8 INCHES | 6 X 6 INCHES | 5 X 9 INCHES | | 16 INCHES | 8 INCHES | 6 X 6 INCHES | 5 X 9 INCHES | | 18 INCHES | 9 INCHES | 7 X 7 INCHES | 5 X 9 INCHES | | 20 INCHES | 10 INCHES | 8 X 8 INCHES | 6 X 11 INCHES | | 22 INCHES | 10 INCHES | 9 X 9 INCHES | 7 X 11 INCHES | | 24 INCHES | 12 INCHES | 10 X 10 INCHES | 7 X 13 INCHES | | 28 INCHES | 15 INCHES* | 12 X 12 INCHES* | 9 X 18 INCHES* | | 28 INCHES | 16 INCHES* | 13 X 13 INCHES* | 9 X 18 INCHES* | | 30 INCHES | 17 INCHES* | 14 X 14 INCHES* | 10 X 18 INCHES* | SPECIFYING PROFESSIONAL <u>MUST</u> INDICATE ON <u>STRUCTURAL</u> DRAWINGS SIZE AND LOCATION OF ANY DUCT THAT IS TO PASS THRU JOIST. THIS DOES NOT INCLUDE ANY FIREPROOFING ATTACHED TO JOIST. FOR DEEPER LH- AND DLH- SERIES ^{*}FOR ROD WEB CONFIGURATION, THESE WILL BE REDUCED. CONSULT MANUFACTURER. #### K SERIES OPEN WEB STEEL JOISTS HORIZONTAL BRIDGING SEE SJI SPECIFICATION 5.5 AND 6. EXPANSION BOLTS BY OTHERS TYPE BAC HORIZONTAL BRIDGING TYPE BAC WELD BRIDGING ANCHORS SEE SJI SPECIFICATION 5.5 AND 6. NOTE: DO NOT WELD BRIDGING TO JOIST WEB MEMBERS. DO NOT HANG ANY MECHANICAL, ELECTRICAL, ETC. FROM BRIDGING. WELDED CROSS BRIDGING SEE SJI SPECIFICATION 5.5 AND 6. HORIZONTAL BRIDGING SHALL BE USED IN SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST THE WALL. BOLTED CROSS BRIDGING SEE SJI SPECIFICATION 5.5 AND 6. - (a) Horizontal Bridging units shall be used in the space adjacent to the wall to allow for proper deflection of the joist nearest the wall. - (b) For required bolt size refer to bridging table on page 184. NOTE: Clip configuration may vary from that shown. FULL DEPTH CANTILEVER END SEE SJI SPECIFICATION 5.4 (d) AND 5.5 FOR BRIDGING REQUIREMENTS. SQUARE END SEE SJI SPECIFICATION 5.4 (d) AND 5.5 FOR BRIDGING REQUIREMENTS. DEEP BEARINGS CONFIGURATION MAY VARY # SLOPED SEAT REQUIREMENTS FOR SLOPES 3/8":12 AND GREATER K-SERIES OPEN WEB STEEL JOISTS #### Notes: - (1) Depths shown are the minimum required for manufacturing of sloped seats. Depths may vary depending on actual bearing conditions. - (2) $d = 1/2 + 2.5/\cos\theta + 4\tan\theta$ (Rounded up to the nearest 1/2".) - (3) Clearance must be checked at outer edge of support. Increase bearing depths as required to allow passage of 2 1/2" deep extension. - (4) If extension depth greater than 2 1/2" is required, increase bearing depths accordingly. Extension lengths greater than 3'-0" and/or high loads may require increased bearing seat depths. Please contact joist supplier for additional guidance. - (5) If slope is 1/4: 12 or less, sloped seats are not required. - (6) Required bearing seat depth is determined at END OF SEAT. - (7) Also refer to SJI Specification 5.3(a) for special considerations of joist end reaction location. #### **BRIDGING REQUIREMENTS FOR K-SERIES JOISTS** Number of Rows of Bridging*** Distances are Span Lengths | Section | ERECTION | N STABILITY SPANS (SJI Spec. Section | 16) | | | | |----------|----------------|--------------------------------------|-------------------------|---|-------------------------------------|-------------------| | lumbers* | Depth | Span Less Than ** | 1 Row | 2 Rows | 3 Rows | 4 Rows | | #1 | 10
12 | 21'
23' | Up Thru 17' | Over 17' thru 26' | Over 26' thru 28' | | | #1 | 14 | 25
27' | | | | | | #2 | 16 | 29' | Up thru 21' | Over 21' thru 30' | Over 30' thru 32' | | | | 12 | 25' | | | | | | #3 | 14
16 | 29'
30' | Up thru 18' | Over 18' thru 26' | Over 26' thru 40' | | | | 18 | 31' | 9 4 4 4 4 | 010.10 1114 20 | 370.23 | | | | 20 | 32' | | | | | | | 14
16 | 29'
32' | | | | | | #4 | 18 | 32' | Up thru 20' | Over 20' thru 30' | Over 30' thru 41' | Over 41' thru 48' | | | 20 | 34' | | | | | | | 22
24 | 34'
36' | | | | | | | 12 | 25' | | | | | | | 16 | 32' | Live Alema 201 | 0 | 0 | O 421 Alam. 401 | | #5 | 18
20 | 33'
34' | Up thru 20' | Over 20' thru 30' | Over 30' thru 42' | Over 42' thru 48' | | | 22 | 35' | | | | | | | 24
26 | 38'
38' | Up thru 28' | Over 28' thru 41' | Over 41' thru 52' | | | | 14 | 29' | Op 1111 20 | 370120 1111441 | OVER THE UNITED SE | | | | 16 | 33' | | | | | | #6 | 18
20 | 35'
36' | Up thru 20' | Over 20' thru 31' | Over 31' thru 42' | Over 42' thru 48' | | #0 | 22 | 36' | | | | | | | 24 | 39' | | | | | | | 26
28 | 39'
40' | Up thru 28' | Over 28' thru 41' | Over 41' thru 54' | Over 54' thru 56' | | | 16 | 33' | | | | | | | 18
20 | 37'
39' | Up thru 23' | Over 23' thru 34' | Over 34' thru 48' | | | #7 | 22 | 40' |
Op till 25 | Over 23 tillu 34 | Over 34 tillu 46 | | | | 24 | 43' | | | | | | | 26
28 | 43'
43' | Up thru 29' | Over 29' thru 44' | Over 44' thru 60' | | | | 30 | 44' | | 3 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | | #8 | 24
26 | 43'
44' | Up thru 25' | Over 25' thru 39' | Over 39' thru 48' | | | #6 | 28 | 44' | Up thru 29' | Over 29' thru 44' | Over 44' thru 60' | | | | 30 | 45' | | | | | | | 16
18 | 33'
37' | | 7 | | | | | 20 | 39' | Up thru 22' | Over 22' thru 34' | Over 34' thru 48' | | | #9 | 22
24 | 40'
44' | | | | | | | 26 | 44' | | | | | | | 28
30 | 45'
45' | Up thru 29' | Over 29' thru 44' | Over 44' thru 60' | | | | 18 | 37' | | | | | | | 20 | 41' | Up thru 22' | Over 22' thru 38' | Over 38' thru 48' | | | #10 | 22
24 | 45'
49' | | | | | | #10 | 26 | 49' | | | | | | | 28
30 | 49'
50' | Up thru 29' | Over 29' thru 48' | Over 48' thru 60' | | | | 22 | 45' | Up thru 24' | Over 24' thru 39' | Over 39' thru 44' | | | | 30 | 52' | Up thru 34' | Over 34' thru 49' | Over 49' thru 60' | | | #11 | | | | | | + | | | | 49' | Up thru 25' | Over 25' thru 43' | Over 43' thru 48' | | | #11 | 24
26
28 | 49'
53'
53' | Up thru 25' Up thru 29' | Over 25' thru 43' Over 29' thru 47' | Over 43' thru 48' Over 47' thru 60' | | ^{*} Last Digit (s) of joist designation. ^{**} For spans EQUAL TO OR EXCEEDING that shown above, one of the required rows, nearest mid-span, must be diagonal type. Bolted diagonal bridgin shall be installed and connected BEFORE releasing the hoisting lines. Refer Specification Section 6 for handling and erection requirements. ^{***} See SJI Specifications 5.11 for uplift requirements | | TABLE 2.7-1a | | | | | | | | | | | | |------------------------|--------------|------------------|-------------------------|--------------|--------------|-----------|--------------|--|--|--|--|--| | | MA | AXIMUM JOIS | K-SERIES
T SPACING F | | ITAL BRIDGIN | IG | | | | | | | | BRIDGING MATERIAL SIZE | | | | | | | | | | | | | | | Bridging | Equal Leg Angles | | | | | | | | | | | | JOIST | | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | 2-1/2 x 5/32 | | | | | | | SECTION | Force | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r = 0.50" | | | | | | | NUMBER* | P_{br} | | | | | | | | | | | | | | lbs. | ftin. | ftin. | ftin. | ftin. | ftin. | ftin. | | | | | | | 1 to 8, incl. | 340 | 5'- 0" | 6'- 3" | 7'- 6" | 8'- 7" | 10'- 0" | 12'- 6" | | | | | | | 9 to 10, incl. | 450 | 4'- 4" | 6'- 1" | 7'- 6" | 8'- 7" | 10'- 0" | 12'- 6" | | | | | | | 11 to 12, incl. | 560 | 3'- 11" | 5'- 6" | 7'- 3" | 8'- 7" | 10'- 0" | 12'- 6" | | | | | | ^{*}Refer to last digit(s) of Joist Designation #### **TABLE 2.7-2** # K, LH, and DLH SERIES JOISTS MAXIMUM JOIST SPACING FOR DIAGONAL BRIDGING | | BRIDGING ANGLE SIZE – (EQUAL LEG ANGLE) | | | | | | | | |-------|---|----------------|----------------------|--------------|-----------|------------|-----------|-----------| | JOIST | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | 2 ½ x 5/32 | 3 x 3/16 | 3 ½ x 1/4 | | DEPTH | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r = 0.50" | r = 0.60" | r = 0.70" | | in. | ft in. | ft in. | ftin. | ft in. | | 12" | 6'-7" | 8'-3" | 9'-11" | 11'-7" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 14" | 6'-6" | 8'-3" | 9'-11" | 11'-7" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 16" | 6'-6" | 8'-2" | 9'-10" | 11'-7" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 18" | 6'-6" | 8'-2" | 9'-10" | 11'-6" | 13'-3" | 16'-7" | 19'-11" | 23'-3" | | 20" | 6'-5" | 8'-2" | 9'-10" | 11'-6" | 13'-2" | 16'-7" | 19'-11" | 23'-3" | | 22" | 6'-4" | 8'-1" | 9'-1 <mark>0"</mark> | 11'-6" | 13'-2" | 16'-6" | 19'-11" | 23'-3" | | 24" | 6'-4" | 8'-1" | 9' - 9" | 11'-5" | 13'-2" | 16'-6" | 19'-10" | 23'-3" | | 26" | 6'-3" | 8'-0" | 9'-9" | 11'-5" | 13'-1" | 16'-6" | 19'-10" | 23'-2" | | 28" | 6'-3" | 8'-0" | 9'-8" | 11'-5" | 13'-1" | 16'-6" | 19'-10" | 23'-2" | | 30" | 6'-2" | 7'-11 | 9'-8" | 11'-4" | 13'-1" | 16'-5" | 19'-10" | 23'-2" | | 32" | 6'-1" | 7′-10" | 9'-7" | 11'-4" | 13'-0" | 16'-5" | 19'-9" | 23'-2" | | 36" | 5'-11" | 7'-9" | 9'-6" | 11'-3" | 12'-11" | 16'-4" | 19'-9" | 23'-1" | | 40" | 5'-9" | 7'-7" | 9'-5" | 11'-2" | 12'-10" | 16'-4" | 19'-8" | 23'-1" | | 44" | 5'-6" | 7'-5" | 9'-3" | 11'-0" | 12'-9" | 16'-3" | 19'-7" | 23'-0" | | 48" | 5'-4" | 7'-3" | 9'-2" | 10'-11" | 12'-8" | 16'-2" | 19'-7" | 22'-11" | | 52" | 5'-0" | 7'-1" | 9'-0" | 10'-10" | 12'-7" | 16'-1" | 19'-6" | 22'-11" | | 56" | 4'-9" | 6'-10" | 8'-10" | 10'-8" | 12'-5" | 16'-0" | 19'-5" | 22'-10" | | 60" | 4'-4" | 6'-8" | 8'-7" | 10'-6" | 12'-4" | 15'-10" | 19'-4" | 22'-9" | | 64" | ** | 6' - 4" | 8 - 5" | 10'-4" | 12'-2" | 15'-9" | 19'-3" | 22'-8" | | 68" | ** | 6'-1" | 8'-2" | 10'-2" | 12'-0" | 15'-8" | 19'-2" | 22'-7" | | 72" | ** | 5'-9" | 8'-0" | 10'-0" | 11'-10" | 15'-6" | 19'-1" | 22'-6" | | 80" | ** | 5'-0" | 7'-5" | 9'-6" | 11'-6" | 15'-3" | 18'-10" | 22'-4" | | 88" | | ** | 6'-9" | 9'-0" | 11'-1" | 14'-11" | 18'-7" | 22'-1" | | 96" | | ** | 6'-0" | 8'-5" | 10'-8" | 14'-7" | 18'-4" | 21'-11" | | 104" | | | ** | 7'-9" | 10'-1" | 14'-2" | 18'-0" | 21'-8" | | 112" | | | ** | 7'-0" | 9'-6" | 13'-9" | 17'-8" | 21'-4" | | 120" | | | | ** | 8'-9" | 13'-4" | 17'-3" | 21'-1" | **INTERPOLATION BELOW THE MINIMUM VALUES SHOWN IS NOT ALLOWED. SEE TABLE 2.7-3 FOR MINIMUM JOIST SPACE FOR DIAGONAL ONLY BRIDGING. ^{**}Connection to joist shall resist a nominal unfactored 700 pound force (3114 N) #### **TABLE 2.7-1b** # LH-SERIES JOISTS MAXIMUM JOIST SPACING FOR HORIZONTAL BRIDGING SPANS OVER 60 ft. REQUIRE BOLTED DIAGONAL BRIDGING | | | BRIDGING MATERIAL SIZE | | | | | | |-----------------|----------------------------------|------------------------|--------------|--------------|---------------|-----------|--------------| | | | Equal Leg Angles | | | | | | | Joist Section | Force
P _{br}
Ibs. | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | 2-1/2 x 5/32 | | Number* | | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r = 0.50" | | | | ftin. | ftin. | ftin. | ftin. | ftin. | ftin. | | 02 to 03, incl. | 400 | 4'-7" | 6'-3" | 7'–6" | 8'-9" | 10'-0" | 12'–6" | | 04 to 05, incl. | 550 | 3'–11" | 5'-6" | 7'–4" | 8'-9" | 10'-0" | 12'–6" | | 06 to 08, incl. | 750 | | 4'-9" | 6'–3" | 7'–11" | 10'–0" | 12'–6" | | 09 | 850 | | 4'-5" | 5'-10" | 7'–5" | 9'-9" | 12'–6" | | 10 | 900 | | 4'-4" | 5'-8" | 7'–3" | 9'–5" | 12'–6" | | 11 | 950 | | 4'-2" | 5'-7" | 7'-0" | 9'–2" | 12'–6" | | 12 | 1100 | | 3'-11" | 5'–2" | 6'-8" | 8'–6" | 12'–6' | | 13 | 1200 | | 3'-9" | 4'11" | 6'-3" | 8'-2" | 12'–6" | | 14 | 1300 | | | 4'-9" | 6'-0" | 7'-10" | 12'-4" | | 15 | 1450 | | | 4'-6" | 5'-8 " | 7'-5" | 11'-8" | | 16 to 17, incl. | 1850 | | | 4'-0" | 5'-0" | 6'-7" | 10'-4" | | 18 to 20, incl. | 2000 | | | 3'-10" | 4'-10" | 6'-4" | 9'-11" | | 21 to 22, incl. | 2500 | | | | 4'-4" | 5'-8" | 8'-10" | | 23 to 24, incl. | 3100 | | | | 3'-10" | 5'-1" | 7'-11" | | 25 | 3500 | | | | | 4'-9" | 7'-6" | ^{*} Refer to last two digit(s) of Joist Designation | Bridging Requirements for LH-Series Joists Erection Stability Spans (SJI Spec. Section 105) | | | | | | | | |---|-----------------|--------------------|---|-------|-----------------|--------------------|--| | Depth | Section Number* | Spans less than ** | | Depth | Section Number* | Spans less than ** | | | 18 | 02 | 33' | П | 32 | 06 thru 07 | 47' | | | | 03 thru 09 | 37' | П | | 08 | 55' | | | 20 | 02 | 33' | | | 09 thru 15 | 60' | | | | 03 | 38' | | 36 | 07 thru 08 | 47' | | | | 04 thru 10 | 41' | | | 09 | 57' | | | 24 | 03 | 35' | | | 10 thru 15 | 60' | | | | 04 | 39' | | 40 | 08 thru 09 | 47' | | | | 05 | 40' | | | 10 thru 17 | 60' | | | | 06 | 45' | | 44 | 09 | 52' | | | | 07 thru 11 | 49' | | | 10 thru 17 | 60' | | | 28 | 05 | 42' | | 48 | 10 thru 17 | 60' | | | | 06 | 46' | П | | | | | | | 07 thru 08 | 54' | | | | | | | | 09 thru 13 | 57' | | | | | | ^{*} Last two digits of joist designation. NOTE: For spans EQUAL TO OR EXCEEDING that shown, one of the rows nearest mid-span must be bolted diagonal type. For spans through 60 feet, the bolted diagonal bridging must be installed BEFORE releasing the hoisting lines. FOR SPANS OVER 60 FEET, ALL BRIDGING ROWS MUST BE BOLTED DIAGONAL TYPE. Spans over 60 feet through 100 feet require two rows of bolted diagonal bridging to be installed, at one-third points, BEFORE releasing the hoisting lines. Spans over 100 feet require ALL rows of bolted diagonal bridging to be installed BEFORE releasing the hoisting lines. #### STANDARD TYPES Longspan steel joists can be furnished with either underslung or square ends, with parallel chords or with single or double pitched top chords to provide sufficient slope for roof drainage. The Longspan joist designation is determined by its nominal depth at the center of the span, except for offset double pitched joists, where the depth should be given at the ridge. A part of the designation should be either the section number or the total design load over the design live load (TL/LL given in plf). All pitched joists will be cambered in addition to the pitch unless specified otherwise. #### **CAMBER** Non-Standard Types: The design professional shall provide on the structural drawings the amount of camber desired in inches. If camber is not specified, Vulcraft will use the camber values for LH and DLH joists based on top chord length or possibly no camber for certain scissor, arched, bowstring, or gable profiles. **Standard Types:** The camber listed in the table will be fabricated into the joists unless the design professional specifically states otherwise on the structural drawings. #### **NON-STANDARD TYPES** The following joists can also be supplied by Vulcraft, however, THE DISTRICT SALES OFFICE OR MAN-UFACTURING FACILITY NEAREST
YOU SHOULD BE CONTACTED FOR ANY LIMITATIONS IN DEPTH OR LENGTH. **Contact Vulcraft for minimum depth at ends. #### **CAMBER FOR STANDARD TYPES** LH &DLH series joists shall have camber in accordance with the following table:*** | Top Chord Length | Approximate Camber | |------------------|--------------------| | 20'-0" | 1/4" | | 30'-0" | 3/8" | | 40'-0" | 5/8" | | 50'-0" | 1" | | 60'-0" | 1 1/2" | | 70'-0" | 2" | | 80'-0" | 2 3/4" | | 90'-0" | 3 1/2" | | 100'-0" | 4 1/4" | ^{**} NOTE: If full camber is not desired near walls or other structural members please note on the structural drawings. For joist lengths exceeding 100'-0" a camber equal to Span/300 shall be used. The specifying professional shall give consideration to coordinating joist camber with adjacent framing. #### **ACCESSORIES AND DETAILS** #### LH & DLH SERIES LONGSPAN STEEL JOISTS ANCHORAGE TO STEEL SEE SJI SPECIFICATION 104.4 (b) AND 104.7 (b) ANCHORAGE TO MASONRY SEE SJI SPECIFICATION 104.4 (a) AND 104.7 (a) BOLTED CONNECTION See Note (c) Typically required at columns CEILING EXTENSION *If bottom chord extension is to be bolted or welded the specifiying professional must provide axial loads on structural drawings. TOP CHORD EXTENSION See Note (a) (a) Extended top chords or full depth cantilever ends require the special attention of the specifying professional. The magnitude and location of the design loads to be supported, the deflection requirements, and the proper bracing shall be clearly indicated on the structural drawings. - (b) See SJI Specification Section 105 for Handling and Erection of LH and DLH joists. - (c) The Occupational Safety and Health Administration Standards (OSHA), Paragraph 1910.12 refers to Paragraph 1518.751 of "Construction Standards" which states: "In steel framing, where bar joists are utilized, and columns are not framed in at least two directions with structural steel members, a bar joist shall be field-bolted at columns to provide lateral stability during construction." NOTE: Configurations may vary from that shown. SQUARE END See SJI Specification 104.5 (f). Cross bridging required near the end of bottom bearing joist. ## SLOPED SEAT REQUIRMENTS FOR SLOPES 3/8":12 AND GREATER LH- AND DLH-SERIES OPEN WEB STEEL JOISTS #### Notes: - (1) Depths shown are the minimum required for manufacturing of sloped seats. Depth may vary depending on actual bearing condition. - (2) $d = 1/2 + 5 / \cos \theta + 6 \tan \theta$ - (3) Clearance must be checked at outer edge of support. Increase bearing seat depth as required to allow passage of 5" deep extension. - (4) If extension depth greater than 5" is required, increase bearing depths accordingly. - (5) Add 2 1/2" to seat depth at 18 thru 25 chord section numbers. Consult with joist manufacturer for information when TCXs are present. - (6) If slope is 1/4 : 12 or less, sloped seats may not required. - (7) Required bearing seat depth shall be determined at END OF SEAT. - (8) Also refer to SJI Specification 104.4(a) for special considerations of joist end reaction location. #### **HIGH STRENGTH** #### **ECONOMICAL** **DESIGN** – Vulcraft LH & DLH Series long span steel joists are designed in accordance with the specifications of the Steel Joist Institute. **ACCESSORIES** see page 69. #### **ROOF SPANS TO 144'-0** #### FLOOR SPANS TO 120'-0 **PAINT** – Vulcraft joists receive a shop-coat of rust inhibitive primer whose performance characteristics conform to those of the Steel Joist Institute specification 102.4. SPECIFICATIONS see page 76. #### K. LH. and DLH SERIES JOISTS MAXIMUM JOIST SPACING FOR DIAGONAL BRIDGING BRIDGING ANGLE SIZE - (EQUAL LEG ANGLE) 1-1/4 x 7/64 1-1/2 x 7/64 1-3/4 x 7/64 2 x 1/8 2 ½ x 5/32 **JOIST** 1 x 7/64 3 x 3/16 3 ½ x 1/4 r = 0.20" r = 0.25" r = 0.30" r = 0.40" r = 0.50" **DEPTH** r = 0.35" r = 0.60" r = 0.70" ft.- in. ft.- in. ft.-in. ft.- in. ft.- in. ft.- in. ft. - in. ft.- in. in. 13'-0" 32" 6'-1" 7'-10" 9'-7" 11'-4" 16'-5" 19'-9" 23'-2" 36" 5'-11" 7'-9" 9'-6" 11'-3" 12'-11" 16'-4" 19'-9" 23'-1" 40" 5'-9" 9'-5" 12'-10" 16'-4" 19'-8" 23'-1" 11'-2' 44" 5'-6" 7'-5" 9'-3' 11'-0" 12'-9" 16'-3" 19'-7" 23'-0" 48" 5'-4" 7'-3" 10'-11" 12'-8" 16'-2" 19'-7" 22'-11" 52" 5'-0" 7'-1" 9'-0" 10'-10" 12'-7" 19'-6" 22'-11" 16'-1" 56" 4'-9" 6'-10' 8'-10" 10'-8" 12'-5" 19'-5" 22'-10" 16'-0" 60" 6'-8" 8'-7" 12'-4" 19'-4" 22'-9" 4'-4" 10'-6" 15'-10" 64" 6'-4" 8 -5" 10'-4" 12'-2" 15'-9" 19'-3" 22'-8" ** 12'-0" 22'-7" 68" 6'-1" 8'-2" 10'-2" 15'-8" 19'-2" ** 19'-1" 22'-6" 72" 5'-9" 8'-0" 10'-0" 11'-10" 15'-6" 80" 5'-0" 7'-5" 9'-6" 11'-6" 15'-3" 18'-10" 22'-4" 88" 6'-9" 9'-0" 11'-1" 14'-11" 18'-7" 22'-1" 96" 6'-0" 8'-5" 10'-8" 14'-7" 18'-4" 21'-11" 104" 7'-9" 10'-1" 14'-2" 18'-0" 21'-8" 112" 7'-0" 9'-6" 13'-9" 17'-8" 21'-4" 120" 8'-9" 13'-4" 17'-3" 21'-1" **INTERPOLATION BELOW THE MINIMUM VALUES SHOWN IS NOT ALLOWED. NOTES: 1. Special designed LH and DLH can be supplied in longer lengths as required. SEE TABLE 2.7-3 FOR MINIMUM JOIST SPACE FOR DIAGONAL ONLY BRIDGING. Additional bridging may be required when joists support standing seam roof decks. The specifying professional should require that the joist manufacturer check the system and provide bridging as required to adequately brace the joists against lateral movement. For bridging requirements due to uplift pressures refer to sect. 104.12. #### **VULCRAFT LH & DLH SERIES / GENERAL INFORMATION** #### **TABLE 2.7-1b** # LH-SERIES JOISTS MAXIMUM JOIST SPACING FOR HORIZONTAL BRIDGING SPANS OVER 60 ft. (18.3 m) REQUIRE BOLTED DIAGONAL BRIDGING | SPANS OVER 60 π. (18.3 m) REQUIRE BOLTED DIAGONAL BRIDGING | | | | | | | | | | | | | | |--|-------------------------------------|--|---------------|---|---|---|--|--|--|--|--|--|--| | | | BRIDGING MATERIAL SIZE** | | | | | | | | | | | | | | _ | | | | eg Angles | | | | | | | | | | Joist Section
Number* | Force
P _{br}
Ibs (N) | 1 x 7/64
(25 x 3 mm)
r = 0.20"
(5.08 mm)
ftin. (mm)
1-1/4 x 7/64
(32 x 3 mm)
r = 0.25"
(6.35 mm) | | 1-1/2 x 7/64
(38 x 3 mm)
r = 0.30"
(7.62 mm)
ftin. (mm) | 1-3/4 x 7/64
(45 x 3 mm)
r = 0.35"
(8.89 mm)
ftin. (mm) | 2 x 1/8
(52 x 3 mm)
r = 0.40"
(10.16 mm)
ftin. (mm) | 2-1/2 x 5/32
(64 x 4 mm)
r = 0.50"
(12.70 mm)
ftin. (mm) | | | | | | | | 02 to 03, incl. | 400
(1779) | 4'-7" (1397) | 6'-3" (1905) | 7'–6" (2286) | 8'-9" (2667) | 10'-0" (3048) | 12'-6" (3810) | | | | | | | | 04 to 05, incl. | 550
(2447) | 3'-11"(1194) | 5'-6" (1676) | 7'–4" (2235) | 8'-9" (2667) | 10'-0" (3048) | 12'–6" (3810) | | | | | | | | 06 to 08, incl. | 750
(3336) | | 4'-9" (1448) | 6'–3" (1905) | 7'–11" (2413) | 10'-0" (3048) | 12'-6" (3810) | | | | | | | | 09 | 850
(3781) | | 4'-5" (1346) | 5'–10" (1778) | 7'–5" (2261) | 9'-9" (2972) | 12'–6" (3810) | | | | | | | | 10 | 900
(4003) | | 4'-4" (1321) | 5'–8" (1727) | 7'–3" (2210) | 9'–5" (2870) | 12'–6" (3810) | | | | | | | | 11 | 950
(4226) | | 4'–2" (1270) | 5'-7" (1702) | 7'-0" (2134) | 9'–2" (2794) | 12'-6" (3810) | | | | | | | | 12 | 1100
(4893) | | 3'-11" (1194) | 5'–2" (1575) | 6'-8" (2032) | 8'-6" (2591) | 12'-6" (3810) | | | | | | | | 13 | 1200
(5338) | | 3'-9" (1143) | 4'-11" (1499) | 6'–3" (1905) | 8'-2" (2489) | 12-6" (3810) | | | | | | | | 14 | 1300
(5783) | | | 4'-9" (1448) | 6'-0" (1829) | 7'-10" (2388) | 12'-4" (3759) | | | | | | | | 15 | 1450
(6450) | | | 4'-6" (1372) | 5'-8" (1727) | 7'-5" (2261) | 11'-8" (3556) | | | | | | | | 16 to 17, incl. | 1850
(8229) | | | 4'-0" (1219) | 5'-0" (1524) | 6'-7"(2007) | 10'-4" (3150) | | | | | | | | 18 to 20, incl. | 2000
(8896) | | | 3'-10" (1168) | 4'-10" (1473) | 6'-4" (1930) | 9'-11" (3023) | | | | | | | | 21 to 22, incl. | 2500
(11120) | | | | 4'-4" (1321) | 5'-8" (1727) | 8'-10" (2692) | | | | | | | | 23 to 24, incl. | 3100
(13789) | | | | 3'-10" (1168) | 5'-1" (1549) | 7'-11" (2413) | | | | | | | | 25 | 3500
(15569) | | | | | 4'-9"(1448) | 7'-6" (2286) | | | | | | | ^{*} Refer to last two digit(s) of Joist Designation #### **TABLE 104.4-1** | JOIST SECTION
NUMBER* | MINIMUM BEARING LENGTH | | | | | | | |------------------------------|--|--|--|--|--|--|--| | 02 to 06 incl | 2 ½" (64 mm) | | | | | | | | 07 to 17 incl | 4" (102 mm) | | | | | | | | 18 to 25 incl | 6" (152 mm) | | | | | | | | *Last two digits of joist de | *Last two digits of joist designation shown in Load Table. | | | | | | | #### **VULCRAFT LH & DLH SERIES / GENERAL INFORMATION** **TABLE 104.5-1** | LH & DLH BRIDGING SPACING | | | | | | | | |---------------------------|--|---------------------------------------|--|--|--|--|--| | JOIST SECTION NUMBER* | MAXIMUM SPACING OF LINES OF TOP CHORD BRIDGING | NOMINAL HORIZONTAL
BRACING FORCE** | | | | | | | | | Ibs | | | | | | | 02 to 03 incl | 10'-0" | 400 | | | | | | | 04 to 05 incl | 11'-0" | 550 | | | | | | | 06 to 08 incl | 13'-0" up to 39'-0", then 15'-0" | 750 | | | | | | | 09 | 13'-0" up to 39'-0", then 16'-0" | 850 | | | | | | | 10 | 14'-0" up to 42'-0", then 18'-0" | 900 | | | | | | | 11 | 15'-0" up to 45'-0", then 18'-0" | 950 | | | | | | | 12 | 17'-0" up to 51'-0", then 18'-6" | 1100 | | | | | | | 13 | 18'-0" up to 54'-0", then 21'-0" | 1200 | | | | | | | 14 | 19'-0" up to 57'-0", then 21'-6" | 1300 | | | | | | | 15 | 21'-0" up to 63'-0", then 24'-6" | 1450 | | | | | | | 16 to 17 incl | 22'-0" up to 66'-0", then 25'-0" | 1850 | | | | | | | 18 to 20 incl | 26'-0" | 2000 | | | | | | | 21 to 22
incl | 30'-0" | 2500 | | | | | | | 23 to 24 incl | 30'-0" | 3100 | | | | | | | 25 | 30'-0" | 3500 | | | | | | Number of lines of bridging is based on joist span dimensions. *Last two digits of joist designation shown in load table. **TABLE 104.7-1** | JOIST SECTION NUMBER* | FILLET WELD | BEARING SEAT BOLTS FOR ERECTION | | | | |-----------------------|------------------------------|---------------------------------|--|--|--| | 02 to 06 incl. | 2- 3/16" x 2"
(5 x 51 mm) | 2- 3/4" (19 mm) A307 | | | | | 07 to 17 incl | 2- 1/4" x 2" | 2– 3/4" (19 mm) A307 | | | | | | (6 x 51 mm) | _ 0, 1 (10 11111), 1001 | | | | | 18 to 25 incl | 2- 1/4" x 4" | 2– 3/4" (19 mm) A325 | | | | | 10 to 25 mc | (6 x 102 mm) | 2- 3/4 (19 IIIII) A323 | | | | | *Last two digits of j | oist designation show | n in load table. | | | | ^{**}Nominal bracing force is unfactored and shown value is for horizontal bridging only. For horizontal bracing force for X bridging divide value shown by 4. **TABLE 2.7-3** #### LH AND DLH SERIES JOISTS HORIZONTAL PLUS DIAGONAL BRIDGING REQUIREMENTS MINIMUM JOIST SPACE FOR **HORIZONTAL AND DIAGONAL DIAGONAL ONLY BRIDGING** MINIMUM ANGLE SIZE REQUIRED **JOIST** FOR JOIST SPACING < (0.70 X DEPTH) **DEPTH** (0.70 x DEPTH)* ANDJOIST SPANS > 60'-0" in. ft.- in. in. 52" 3'-0" 1" x 1" x 7/64" 56" 3'- 3" 1" x 1" x 7/64" 60" 3'-6" 1" x 1" x 7/64" 3'-8" 1¼" x 1¼" x 7/64" 64" 68" 3'-11" 11/4" x 11/4" x 7/64" 72" 4'- 2" 11/4" x 11/4" x 7/64" 80" 4'-8" 11/4" x 11/4" x 7/64" 1 ½" x 1 ½" x 7/64" 88" 5'- 1" 96" 1 ½" x 1 ½" x 7/64" 5'- 7" 104" 6'-0" 1 3/4" x 1 3/4" x 7/64" 6'-6" 1 3/4" x 1 3/4" x 7/64" 112" 2" x 2" x1/8" *NOTE: WHEN THE JOIST SPACING IS LESS THAN 0.70 x JOIST DEPTH, BOLTED HORIZONTAL BRIDGING SHALL BE USED IN ADDITION TO DIAGONAL BRIDGING. 7'- 0" **TABLE 2.7-4** | BOLT SIZES | WHICH MEET BOLTED BRIDGIN | G CONNECTION REQUIREMENTS | |--------------|---------------------------|---------------------------| | JOIST SERIES | SECTION NUMBER* | BOLT DIAMETER | | K | ALL | 3/8" A307 | | LH/DLH | 2 – 12 | 3/8" A307 | | LH/DLH | 13 – 17 | 1/2" A307 | | DLH | 18 – 20 | 5/8" A307 | | DLH | 21 – 22 | 5/8" A325 | | DLH | 23 – 25 | 3/4" A325 | ^{*}REFER TO LAST DIGIT(S) OF JOIST DESIGNATION 120" NOTE: WASHERS SHALL BE USED WITH SLOTTED OR OVERSIZED HOLES. BOLTS SHALL BE TIGHTENED TO A MINIMUM SNUG TIGHT CONDITION. ## STANDARD SPECIFICATION # FOR LONGSPAN STEEL JOISTS, LH-SERIES AND DEEP LONGSPAN STEEL JOISTS, DLH-SERIES Adopted by the Steel Joist Institute May 10, 2006 Revised to May 18, 2010, Effective December 31, 2010 SECTION 100. #### SCOPE AND DEFINITIONS #### 100.1 SCOPE The Standard Specification for Longspan Steel Joists, LH-Series and Deep Longspan Steel Joists, DLH-Series, hereafter referred to as the Specification, covers the design, manufacture, application, and erection stability and handling of Longspan Steel Joists LH-Series, and Deep Longspan Steel Joists, DLH-Series in buildings or other structures, where other structures are defined as those structures designed, manufactured, and erected in a manner similar to buildings.. LH- and DLH-Series joists shall be designed using Allowable Stress Design (ASD) or Load and Resistance Factor Design (LRFD) in accordance with this Specification. Steel joists shall be erected in accordance with the Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Code of Federal Regulations 29CFR Part 1926 Safety Standards for Steel Erection. The erection of LH- and DLH-Series joists 144 ft. (43.9 m) or less is governed by Section 1926.757 Open Web Steel Joists and joists over this length by Section 1926.756 Beams and Columns. This Specification includes Sections 100 through 105. #### 100.2 DEFINITION The term "Longspan Steel Joists **LH-**Series and Deep Longspan Steel Joists **DLH-**Series", as used herein, refers to open web, load-carrying members utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength has been attained by cold working, suitable for the direct support of floors and roof slabs or decks. The **LH-**Series joists have been standardized in depths from 18 inches (457 mm) through 48 inches (1219 mm), for spans up through 96 feet (29260 mm). The **DLH-**Series joists have been standardized in depths from 52 inches (1321 mm) through 120 inches (3048 mm), for spans up through 240 feet (73150 mm). The **LH**- and **DLH**-Series standard joist designations are determined by their nominal depth at the center of the span, followed by the letters **LH** or **DLH** as appropriate, and then by the chord size designation assigned. The chord size designations range from 02 to 25. Therefore, as a performance based specification, the **LH**- and **DLH**-Series standard joist designations listed in the following Standard Load Tables shall support the uniformly distributed loads as provided in the appropriate tables: Standard LRFD Load Table Longspan Steel Joists, LH-Series – U.S. Customary Units Standard ASD Load Table Longspan Steel Joists, LH-Series – U.S. Customary Units Standard LRFD Load Table Deep Longspan Steel Joists, DLH-Series – U.S. Customary Units Standard ASD Load Table Deep Longspan Steel Joists, DLH-Series – U.S. Customary Units And the following Standard Load Tables published electronically at www.steeljoist.org/loadtables Standard LRFD Load Table Longspan Steel Joists, LH-Series - S.I. Units Standard ASD Load Table Longspan Steel Joists, LH-Series - S.I. Units Standard LRFD Load Table Deep Longspan Steel Joists, DLH-Series - S.I. Units Standard ASD Load Table Deep Longspan Steel Joists, **DLH**-Series – S.I. Units An alternate method of specifying a standard LH-Series joist is to provide the designation in a "load/load" sequence. The format used is ddLHtl/ll where: dd is the nominal depth of the joist in inches (mm) tl is the total uniformly distributed load applied to the joist top chord, plf (kN/m) Il is the uniform live load for which the deflection shall be checked and limited as required by the Specification, plf (kN/m) The load/load LH-Series joists can be specified in depths from 14 inches (356 mm) through 120 inches (3048 mm) and spans from 14 feet (4267 mm) up through 240 feet (73152 mm). The maximum uniformly distributed load-carrying capacity of 2400 plf (35.03 kN/m) in ASD and 3600 plf (52.54 kN/m) in LRFD has been established for this alternate LH-Series format. The maximum capacity for any given load/load LH-Series joist is a function of span, depth and chord size. Six standard types of **LH**- and **DLH**-Series joists are designed and manufactured. These types are underslung (top chord bearing) or square-ended (bottom chord bearing), with parallel chords or with single or double pitched top chords. A pitch of the joist top chord up to 1/2 inch per foot (1:24) is allowed. The standard joist designation depth shall be the depth at mid-span. #### 100.3 STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS The design drawings and specifications shall meet the requirements in the Code of Standard Practice for Steel Joists and Joist Girders, except for deviations specifically identified in the design drawings and/or specifications. SECTION 101. # REFERENCED SPECIFICATIONS, CODES AND STANDARDS #### 101.1 REFERENCES American Institute of Steel Construction, Inc. (AISC) ANSI/AISC 360-10 Specification for Structural Steel Buildings American Iron and Steel Institute (AISI) ANSI/AISI \$100-2007 North American Specification for Design of Cold-Formed Steel Structural Members ANSI/AISI \$100-07/\$1-09, Supplement No. 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition ANSI/AISI S100-07/S2-10, Supplement No. 2 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition American Society of Testing and Materials, ASTM International (ASTM) ASTM A6/A6M-09, Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling ASTM A36/A36M-08, Standard Specification for Carbon Structural Steel ASTM A242/242M-04 (2009), Standard Specification for High-Strength Low-Alloy Structural Steel ASTM A307-07b, Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength ASTM A325/325M-09, Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi [830 MPa] Minimum Tensile Strength ASTM A370-09ae1, Standard Test Methods and Definitions for Mechanical Testing of Steel Products ASTM A500/A500M-07, Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes ASTM A529/A529M-05, Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality ASTM A572/A572M-07, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel ASTM A588/A588M-05, Standard Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance ASTM A606/A606M-09, Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance ASTM A992/A992M-06a, Standard Specification for Structural Steel Shapes ASTM A1008/A1008M-09, Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable ASTM A1011/A1011M-09a, Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength American Welding Society (AWS) AWS A5.1/A5.1M-2004, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding AWS A5.5/A5.5M:2006, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding AWS A5.17/A5.17M-97:R2007, Specification for Carbon Steel Electrodes and Fluxes for
Submerged Arc Welding AWS A5.18/A5.18M:2005, Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.20/A5.20M:2005, Specification for Carbon Steel Electrodes for Flux Cored Arc Welding AWS A5.23/A5.23M:2007, Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.28/A5.28M:2005, Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.29/A5.29M:2005, Specification for Low Alloy Steel Electrodes for Flux Cored Arc Welding #### **101.2 OTHER REFERENCES** The following references are non-ANSI Standard documents and as such, are provided solely as sources of commentary or additional information related to topics in this Specification: American Society of Civil Engineers (ASCE) SEI/ASCE 7-10 Minimum Design Loads for Buildings and Other Structures Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. Steel Joist Institute (SJI) SJI-COSP-2010, Code of Standard Practice for Steel Joists and Joist Girders Technical Digest No. 3 (2007), Structural Design of Steel Joist Roofs to Resist Ponding Loads Technical Digest No. 5 (1988), Vibration of Steel Joist-Concrete Slab Floors Technical Digest No. 6 (2011), Structural Design of Steel Joist Roofs to Resist Uplift Loads Technical Digest No. 8 (2008), Welding of Open Web Steel Joists and Joist Girders Technical Digest No. 9 (2008), Handling and Erection of Steel Joists and Joist Girders Technical Digest No. 10 (2003), Design of Fire Resistive Assemblies with Steel Joists Technical Digest No. 11 (2007), Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders Technical Digest No. 12 (2007), Evaluation and Modification of Open Web Steel Joists and Joist Girders Steel Structures Painting Council (SSPC) (2000), Steel Structures Painting Manual, Volume 2, Systems and Specifications, Paint Specification No. 15, Steel Joist Shop Primer, May 1, 1999, Pittsburgh, PA. SECTION 102. #### **MATERIALS** #### 102.1 STEEL The steel used in the manufacture of **LH-** and **DLH-**Series joists shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength Low-Alloy Structural Steel, ASTM A242/A242M. - Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes, ASTM A500/A500M. - High-Strength Carbon-Manganese Steel of Structural Quality, ASTM A529/A529M. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M. - High-Strength Low-Alloy Structural Steel up to 50 ksi [345 MPa] Minimum Yield Point with Atmospheric Corrosion Resistance, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance, ASTM A606/A606M. - Structural Steel Shapes, ASTM A992/A992M. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable, ASTM A1008/A1008M. - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra High Strength, ASTM A1011/A1011M. or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 102.2. #### American National Standard SJI-LH/DLH-2010 #### **102.2 MECHANICAL PROPERTIES** Steel used for LH- and DLH-Series joists shall have a minimum yield strength determined in accordance with one of the procedures specified in this section, which is equal to the yield strength* assumed in the design. *The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1 "Yield Point", and in paragraph 13.2 "Yield Strength", of ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, or as specified in paragraph 102.2 of this specification. Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370, and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A500/A500M, A529/A529M, A572/A572M, A588/A588M, A992/A992M whichever specification is applicable, on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606/A606M, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI North American Specifications for the Design of Cold-Formed Steel Structural Members. They shall also indicate compliance with these provisions and with the following additional requirements: - a) The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 8 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall be not greater than 20 times the least radius of gyration. - d) If any test specimen fails to pass the requirements of the subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. #### 102.3 WELDING ELECTRODES The following electrodes shall be used for arc welding: a) For connected members both having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E70XX AWS A5.5: E70XX-X AWS A5.17: F7XX-EXXX, F7XX-ECXXX flux electrode combination AWS A5.18: ER70S-X, E70C-XC, E70C-XM #### American National Standard SJI-LH/DLH-2010 AWS A5.20: E7XT-X, E7XT-XM AWS A5.23: F7XX-EXXX-XX, F7XX-ECXXX-XX AWS A5.28: ER70S-XXX, E70C-XXX AWS A5.29: E7XTX-X, E7XTX-XM b) For connected members both having a specified minimum yield strength of 36 ksi (250 MPa) or one having a specified minimum yield strength of 36 ksi (250 MPa), and the other having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E60XX AWS A5.17: F6XX-EXXX, F6XX-ECXXX flux electrode combination AWS A5.20: E6XT-X, E6XT-XM AWS A5.29: E6XTX-X, E6XTX-XM or any of those listed in Section 102.3(a). Other welding methods, providing equivalent strength as demonstrated by tests, shall be permitted to be used. #### **102.4 PAINT** The standard shop paint is intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15. - b) Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. #### SECTION 103. #### DESIGN AND MANUFACTURE #### **103.1 METHOD** Joists shall be designed in accordance with this specification as simply-supported trusses supporting a floor or roof deck so constructed as to brace the top chord of the joists against lateral buckling. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates, use the American Institute of Steel Construction, Specification for Structural Steel Buildings. - b) For members which are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. #### **Design Basis:** Steel joist designs shall be in accordance with the provisions in this Standard Specification using Load and Resistance Factor Design (LRFD) or Allowable Strength Design (ASD) as specified by the **specifying professional** for the project. #### Loads, Forces and Load Combinations: The loads and forces used for the steel joist design shall be calculated by the **specifying professional** in accordance with the applicable building code and specified and provided on the contract drawings. #### American National Standard SJI-LH/DLH-2010 The load combinations shall be specified by the **specifying professional** on the contract drawings in accordance with the applicable building code or, in the absence of
a building code, the load combinations shall be those stipulated in SEI/ASCE 7. For LRFD designs, the load combinations in SEI/ASCE 7, Section 2.3 apply. For ASD designs, the load combinations in SEI/ASCE 7, Section 2.4 apply. #### 103.2 DESIGN AND ALLOWABLE STRESSES #### Design Using Load and Resistance Factor Design (LRFD) Joists shall have their components so proportioned that the required stresses, f_u, shall not exceed ϕF_n where: f_u = required stress ksi (MPa) F_n = nominal stress ksi (MPa) ϕ = resistance factor ϕF_n = design stress #### **Design Using Allowable Strength Design (ASD)** Joists shall have their components so proportioned that the required stresses, f, shall not exceed F_0/Ω where: f = required stress ksi (MPa) $F_n = required stress$ ksi (MPa) Ω = safety factor $F_n/Ω$ = allowable stress #### Stresses: **For Chords**: The calculation of design or allowable stress shall be based on a yield strength, F_y, of the material used in manufacturing equal to 50 ksi (345 MPa). For all other joist elements: The calculation of design or allowable stress shall be based on a yield strength, F_y , of the material used in manufacturing, but shall not be less than 36 ksi (250 MPa) or greater than 50 ksi (345 MPa). Note: Yield strengths greater than 50 ksi shall not be used for the design of any joist members. (a) Tension: $\phi_t = 0.90 \text{ (LRFD)}, \Omega_t = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_y$$ (LRFD) (103.2-1) Allowable Stress = $$0.6F_y$$ (ASD) (103.2-2) (b) Compression: $\phi_c = 0.90 \text{ (LRFD)}, \Omega_c = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_{cr}$$ (LRFD) (103.2-3) Allowable Stress = $$0.6F_{cr}$$ (ASD) (103.2-4) For members with $\frac{k\ell}{r} \le 4.71 \sqrt{\frac{E}{QF_y}}$ $$F_{cr} = Q \left[0.658^{\left(QF_{y}/F_{e}\right)} \right] F_{y}$$ (103.2-5) #### American National Standard SJI-LH/DLH-2010 For members with $\frac{k\ell}{r} > 4.71 \sqrt{\frac{E}{Q}F_y}$ $$F_{cr} = 0.877F_{e}$$ (103.2-6) Where F_e = Elastic buckling stress determined in accordance with Equation 103.2-7 $$F_{e} = \frac{\pi^{2} E}{\left(\frac{k\ell}{r}\right)^{2}}$$ (103.2-7) In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for a compression or tension web member, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). For hot-rolled sections and cold formed angles, Q is the full reduction factor for slender compression members as defined in the AISC *Specification for Structural Steel Buildings*.except that when the first primary compression web member is a crimped-end angle member, whether hot-rolled or cold formed:. $$Q = [5.25/(w/t)] + t \le 1.0$$ (103.2-8) Where: w = angle leg length, inches t = angle leg thickness, inches or, $$Q = [5.25/(w/t)] + (t/25.4) \le 1.0$$ (103.2-9) Where: w = angle leg length, millimeters t = angle leg thickness, millimeters For all other cold-formed sections the method of calculating the nominal compression strength is given in the AISI, North American Specification for the Design of Cold-Formed Steel Structural Members. (c) Bending: $\phi_b = 0.90 \text{ (LRFD)}, \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_n = F_v$ Design Stress = $$\phi_b F_n = 0.9 F_y$$ (LRFD) (103.2-10) Allowable Stress = $$F_n/\Omega_b$$ = 0.6 F_y (ASD) (103.2-11) For web members of solid round cross section: $F_n = 1.6 F_v$ Design Stress = $$\phi_b F_n = 1.45 F_y$$ (LRFD) (103.2-12) Allowable Stress = $$F_n/\Omega_b$$ = 0.95 F_y (ASD) (103.2-13) #### American National Standard SJI-LH/DLH-2010 For bearing plates used in joist seats: $F_n = 1.5 F_y$ Design Stress = $$\phi_b F_n = 1.35 F_y$$ (LRFD) (103.2-14) Allowable Stress = $$F_n/\Omega_b$$ = 0.90 F_y (ASD) (103.2-15) #### (d) Weld Strength: Shear at throat of fillet welds, flare bevel groove welds, partial joint penetration groove welds, and plug/slot welds: Nominal Shear Stress = $$F_{nw}$$ = 0.6 F_{exx} (103.2-16) **LRFD**: $\phi_{W} = 0.75$ Design Shear Strength = $$\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A_w$$ (103.2-17) **ASD**: $\Omega_{\rm w} = 2.0$ Allowable Shear Strength = $$R_n/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx}A_w$$ (103.2-18) Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations $F_{exx} = 70 \text{ ks}$ (483 MPa) Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations F_{exx} = 60 ksi (414 MPa) A_w = effective throat area, where: For fillet welds, A_w = effective throat area, (other design methods demonstrated to provide sufficient strength by testing shall be permitted to be used); For flare bevel groove welds, the effective weld area is based on a weld throat width, T, where: $$T \text{ (inches)} = 0.12D + 0.11$$ (103.2-19) Where: D = web diameter, inches or, $$T (mm) = 0.12D + 2.8$$ (103.2-20) Where: D = web diameter, mm For plug/slot welds, A_w = cross-sectional area of the hole or slot in the plane of the faying surface provided that the hole or slot meets the requirements of the American Institute of Steel Construction *Specification for Structural Steel Buildings* (and as described in SJI Technical Digest No. 8, "Welding of Open-Web Steel Joists and Joist Girders"). Strength of resistance welds and complete-joint-penetration groove or butt welds in tension or compression (only when the stress is normal to the weld axis) is equal to the base metal strength: $$\phi_{\rm t} = \phi_{\rm c} = 0.90 \; ({\rm LRFD})$$ $\Omega_{\rm t} = \Omega_{\rm c} = 1.67 \; ({\rm ASD})$ Design Stress = $$0.9 F_v$$ (LRFD) (103.2-21) Allowable Stress = $$0.6 F_v$$ (ASD) (103.2-22) #### American National Standard SJI-LH/DLH-2010 #### 103.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratios, 1.0ℓ /r and 1.0ℓ s /r of members as a whole or any component part shall not exceed the values given in Table 103.3-1, Parts A. The effective slenderness ratio, $k\ell /r$ to be used in calculating the nominal stresses, F_{cr} and F'_{e} , is the largest value as determined from Table 103.3-1, Parts B and C. In compression members when fillers or ties are used, they shall be spaced so that the ℓ_s/r_z ratio of each component does not exceed the governing ℓ/r ratio of the member as a whole. The terms used in Table 103.3-1 are defined as follows: - ℓ = length center-to-center of panel points, except ℓ = 36 inches (914 millimeters) for calculating ℓ/r_y of top chord member, in. (mm). - e maximum length center-to-center between panel point and filler (tie), or between adjacent fillers (ties), in. (mm). in. (mm). Output Description: - r_x = member radius of gyration in the plane of the joist, in. (mm). - r_v = member radius of gyration out of the plane of the joist, in. (mm). - r_z = least radius of gyration of a member component, in. (mm). Compression web members are those web members subject to compressive axial loads under gravity loading. Tension web members are those web members subject to tension axial loads under gravity loading, and which may be subject to compressive axial loads under alternate loading conditions, such as net uplift. For top chords, the end panel(s) are the panels between the bearing seat and the first primary interior panel point comprised of at least two intersecting web members. # TABLE 103.3-1 MAXIMUM AND EFFECTIVE SLENDERNESS RATIOS | | | 1 | r | | | |----|---|---|------------------------|-------------------|---------------| | | Description | kℓ/r _x | kℓ/r _y | kℓ/r _z | $k\ell_s/r_z$ | | I | TOP CHORD INTERIOR PANELS | | | | | | | A. The slenderness ratios, $1.0\ell/r$ and $1.0\ell_s/r$, of me part shall not exceed 90. | embers as | a whole or | any com | ponent | | | B. The effective slenderness ratio, kℓ/r, to determin 1. With fillers or ties 2. Without fillers or ties 3. Single component members | ne F _{cr} wher
0.75

0.75 | 0.94

0.94 | 0.75 | 1.0
 | | | C. For bending, the effective slenderness ratio, kℓ/ | | | nere k is: | | | П | TOP CHORD END PANELS, ALL BOTTOM CHOR | RD PANE | LS | | | | | A. The slenderness ratios, 1.0ℓ /r and 1.0ℓ s/r, of me part shall not exceed 120 for Top Chords, or 24 | | | | ponent | | | B. The effective slenderness ratio, kℓ/r, to determing 1. With fillers or ties 2. Without fillers or ties 3. Single component members | 1.0

1.0 | 0.94

0.94 | 1.0
 | 1.0
 | | | C. For bending, the effective slenderness ratio, $k\ell l$ | r, to detern | nine F _e wh | nere k is:
 | | | Ш | TENSION WEB MEMBERS | | | | | | | A. The slenderness ratios, 1.0ℓ/r and 1.0ℓ_s/r, of me part shall not exceed 240. B. For end web members subject to compression, determine F_{cr} where k is: | | | | | | | With fillers or ties Without fillers or ties Single component members | 0.75

0.75 | 1.0

0.8 | 1.0
 | 1.0
 | | IV | COMPRESSION WEB MEMBERS | | | | | | | A. The slenderness ratios, 1.0 ℓ /r and 1.0 ℓ s/r, of me shall not exceed 200. | embers as | a whole o | r any com | ponent part | | | B. The effective slenderness ratio, kℓ/r, to determine 1. With fillers or ties | ne F _{cr} wher
0.75 | e k is:
1.0 | | 1.0 | | | Without fillers or tiesSingle component members |
0.75 |
1.0 | 1.0
 | | | | | | | | | #### American National Standard SJI-LH/DLH-2010 #### **103.4 MEMBERS** #### (a) Chords The
bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the top chord about its vertical axis shall not be less than: $$r_{y} \ge \ell_{br} / \left(124 + 0.67 d_{j} + 28 \frac{d_{j}}{L}\right)$$, in. (103.4-1a) $$r_{y} \ge \ell_{br} / \left(124 + 0.026 \,d_{j} + 0.34 \, \frac{d_{j}}{L}\right)$$, mm (103.4-1b) or, $$r_{v} \ge \ell_{br}/170$$ (103.4-2) Where: di is the steel joist depth, in. (mm) L is the joist span length, ft. (m) r_v is the out-of-plane radius of gyration of the top chord, in. (mm) $\ell_{\rm br}$ is the spacing in inches (millimeters) between lines of bridging as specified in Section 104.5(d). The top chord shall be considered as stayed laterally by the floor slab or roof deck provided the requirements of Section 104.9(e) of this specification are met. The top chord shall be designed as a continuous member subject to combined axial and bending stresses and shall be so proportioned that: #### For **LRFD**: at the panel point: $$f_{au} + f_{bu} \le 0.9 F_y$$ (103.4-3) at the mid panel: for, $$\frac{f_{au}}{\phi_c F_{cr}} \ge 0.2$$ $$\frac{f_{au}}{\phi_c F_{cr}} + \frac{8}{9} \left[\frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F'_e}\right)} \right] Q \phi_b F_y$$ (103.4-4) #### American National Standard SJI-LH/DLH-2010 $$\text{for, } \frac{f_{au}}{\phi_c F_{cr}} < 0.2 \,,$$ $$\left(\frac{f_{au}}{2\phi_c F_{cr}}\right) + \left|\frac{C_m f_{bu}}{\left[1 - \left(\frac{f_{au}}{\phi_c F'_e}\right)\right] Q \phi_b F_y}\right| \le 1.0$$ (103.4-5) $f_{au} = P_u/A = Required compressive stress, ksi (MPa)$ P_u = Required axial strength using LRFD load combinations, kips (N) $f_{bu} = M_u/S =$ Required bending stress at the location under consideration, ksi (MPa) M_u = Required flexural strength using LRFD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm3) F_{cr} = Nominal axial compressive stress in ksi (MPa) based on ∉/r as defined in Section 103.2(b), $C_m = 1 - 0.3 f_{au}/\phi F'_e$ for end panels $C_m = 1 - 0.4 f_{au}/\phi F'_e$ for interior panels F_y = Specified minimum yield strength, ksi (MPa) $$F'_e = \frac{\pi^2 E}{(K \ell / r_x)^2}$$, ksi (MPa) Where ℓ is the panel length, in inches (millimeters), as defined in Section 103.2(b) and r_x is the radius of gyration about the axis of bending. Q = Form factor defined in Section 103.2(b) A = Area of the top chord, in. 2 (mm 2) #### For **ASD**: at the panel point: $$f_a + f_b \le 0.6F_v$$ (103.4-6) at the mid panel: for, $$\frac{f_a}{F_a} \ge 0.2$$ $$\frac{f_{a}}{F_{a}} + \frac{8}{9} \left[\frac{C_{m} f_{b}}{1 - \left(\frac{1.67 f_{a}}{F'_{a}}\right) Q F_{b}} \right] \le 1.0$$ (103.4-7) #### American National Standard SJI-LH/DLH-2010 for $$\frac{f_a}{F_a} < 0.2$$, $$\left(\frac{f_a}{2F_a}\right) + \left[\frac{C_m f_b}{\left[1 - \left(\frac{1.67 f_a}{F_e'}\right)\right] Q F_b}\right] \le 1.0$$ (103.4-8) f_a = P/A required compressive stress, ksi (MPa) P = Required axial strength using ASD load combinations, kips (N) f_b = M/S = required bending stress at the location under consideration, ksi (MPa) M = Required flexural strength using ASD load combinations, k-in. (N-mm) F_a = Allowable axial compressive stress based on ℓ/r as defined in Section 103.2(b), ksi (MPa) F_b = Allowable bending stress; 0.6 F_v , ksi (MPa) C_m = 1 - 0.50 f_a/F'_e for end panels C_m = 1 - 0.67 f_a/F'_e for interior panels The top chord and bottom chord shall be designed such that at each joint: $$f_{\text{vmod}} \le \phi_{\text{v}} f_{\text{n}}$$ (LRFD, $\phi = 1.00$) (103.4-9) $$f_{vmod} \le f_n/\Omega_v$$ (ASD, $\Omega = 1.50$) (103.4-10) f_n = nominal shear stress = 0.6F_v, ksi (MPa) f_t = axial stress = P/A, ksi (MPa) f_v = shear stress = V/bt, ksi (MPa) f_{vmod} = modified shear stress = $(\frac{1}{2})(f_t^2 + 4f_v^2)^{1/2}$ b = length of vertical part(s) of cross section, in. (mm) t = thickness of vertical part(s) of cross section, in. (mm) It shall not be necessary to design the top chord and bottom chord for the modified shear stress when a round bar web member is continuous through a joint. The minimum required shear of Section 103.4(b) 25 percent of the end reaction) shall not be required when evaluating Equation 103.4-9 or 103.4-10. #### (b) Web The vertical shears to be used in the design of the web members shall be determined from full uniform loading, but such vertical shears shall be not less than 25 percent of the end reaction. Interior vertical web members used in modified Warren type web systems shall be designed to resist the gravity loads supported by the member plus an additional axial load of ½ of 1.0 percent of the top chord axial force. #### (c) Joist Extensions Joist extensions are defined as one of three types, top chord extensions (TCX), extended ends, or full depth cantilevers. #### American National Standard SJI-LH/DLH-2010 Design criteria for joist extensions shall be specified using one of the following methods: - (1) A joist extension shall be designed for the load from the Standard Load Tables based on the design length and designation of the specified joist. In the absence of other design information, the joist manufacturer shall design the joist extension for this loading as a default. - (2) A loading diagram shall be provided for the joist extension. The diagram shall include the magnitude and location of the loads to be supported, as well as the appropriate load combinations. Any deflection requirements or limits due to the accompanying loads and load combinations on the joist extension shall be provided by the **specifying professional**, regardless of the method used to specify the extension. Unless otherwise specified, the joist manufacturer shall check the extension for the specified deflection limit under uniform live load acting simultaneously on both the joist base span and the extension. The joist manufacturer shall consider the effects of joist extension loading on the base span of the joist. This includes carrying the design bending moment due to the loading on the extension into the top chord end panel(s), and the effect on the overall joist chord and web axial forces. Bracing of joist extensions shall be clearly indicated on the structural drawings. #### 103.5 CONNECTIONS #### (a) Methods Joist connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. #### (1) Welded Connections - a) Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between weld and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 mm) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 mm) in any 1 inch (25 mm) of design weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. #### (2) Welded Connections for Crimped-End Angle Web Members The connection of each end of a crimped angle web member to each side of the chord shall consist of a weld group made of more than a single line of weld. The design weld length shall include, at minimum, an end return of two times the nominal weld size. #### (3) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and for weld sampling and testing. (See Technical Digest 8 - Welding of Open Web Steel Joists and Joist Girders.) (4) Weld Inspection by Outside Agencies (See Section 104.13 of this specification) The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 103.5(a)(1) above. Ultrasonic, X-ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. #### American National Standard SJI-LH/DLH-2010 #### (b) Strength - (1) <u>Joint Connections</u> Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. - (2) Shop Splices Shop splices shall be permitted to occur at any point in chord or web members. Splices shall be designed for the member force, but not less than 50 percent of the member strength. All component parts comprising the cross section of the chord or web member (including reinforcing plates, rods, etc.) at the point of the splice, shall develop an ultimate tensile force of at least 1.2 times the product of the yield strength and the full design area of the chord or web. The "full design area" is the minimum required area such that the required stress will be less than the design (LRFD) or allowable (ASD) stress. #### (c) Field Splices Field Splices shall be designed by the manufacturer and shall be either bolted or welded. Splices shall be designed for the member force, but not less than 50 percent of the member strength. #### (d) Eccentricity Members connected at a joint shall have their center of gravity lines meet at a point, if practical. Eccentricity on either side of the neutral axis of chord members shall be permitted to be neglected when it does not exceed the distance between the neutral axis and the back of the chord. Otherwise, provision shall be made for the stresses due to eccentricity. Ends of joists shall be proportioned to resist bending produced by eccentricity at the support. In those cases where a single angle compression member is attached to the outside of the stem of a tee or double angle chord, due consideration shall be given to eccentricity. #### **103.6 CAMBER** Joists shall have approximate camber in accordance with the
following: **TABLE 103.6-1** | Top Cho | ord Length | Approximate Camber | | | | | |---------|-------------------|--------------------|----------|--|--|--| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | | | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | | | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | | | | 50'-0" | 50'-0" (15240 mm) | | (25 mm) | | | | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | | | | | 70'-0" | 70'-0" (21336 mm) | | (51 mm) | | | | | 80'-0" | 80'-0" (24384 mm) | | (70 mm) | | | | | 90'-0" | 90'-0" (27432 mm) | | (89 mm) | | | | | 100'-0" | (30480 mm) | 4 1/4" | (108 mm) | | | | For joist lengths exceeding 100'-0" a camber equal to Span/300 shall be used. The **specifying professional** shall give consideration to coordinating joist camber with adjacent framing. #### American National Standard SJI-LH/DLH-2010 #### 103.7 VERIFICATION OF DESIGN AND MANUFACTURE #### (a) Design Calculations Companies manufacturing any **LH-** or **DLH**-Series Joists shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. Design data shall be submitted in detail and in the format specified by the Institute. #### (b) In-Plant Inspections Each manufacturer shall verify his ability to manufacture **LH**- and **DLH**-Series **Joist** through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel **Joist** Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The plant inspections are not a guarantee of the quality of any specific joists; this responsibility lies fully and solely with the individual manufacturer. SECTION 104. #### APPLICATION #### **104.1 USAGE** This specification shall apply to any type of structure where floors and roofs are to be supported directly by steel joists installed as hereinafter specified. Where joists are used other than on simple spans under uniformly distributed loading as prescribed in Section 103.1, they shall be investigated and modified when necessary to limit the required stresses to those listed in Section 103.2. When a rigid connection of the bottom chord is to be made to a column or other structural support, the joist is then no longer simply supported, and the system shall be investigated for continuous frame action by the **specifying professional**. The magnitude and location of all loads and forces shall be provided on the structural drawings. The **specifying professional** shall design the supporting structure, including the design of columns, connections, and moment plates*. This design shall account for the stresses caused by lateral forces and the stresses due to connecting the bottom chord to the column or other structural support. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the specifying professional. The moment plates shall be furnished by other than the joist manufacturer. *For further reference, refer to Steel Joist Institute Technical Digest No. 11, "Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders" #### 104.2 SPAN The span of a longspan or deep longspan joist shall not exceed 24 times its depth. #### **104.3 DEPTH** Joists shall have either parallel chords or a top chord pitch of up to 1/2 inch per foot (1:24). The joist designation depth shall be the depth at mid-span. #### **104.4 END SUPPORTS** #### (a) Masonry and Concrete A LH- or DLH-Series Joist end supported by masonry or concrete shall bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical or lateral forces shall be taken by the **specifying professional** in the design of the steel bearing plate and the masonry or concrete. The ends of LH- and DLH-Series Joists shall extend a distance of not less than 6 inches (152 mm) over the masonry or concrete support unless it is deemed necessary to bear less than 6 inches (152 mm) over the support. Special consideration shall then be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. LH- and DLH-Series Joists shall be anchored to the steel bearing plate and shall bear a minimum of 4 inches (102 mm) on the plate. The steel bearing plate shall be located not more than 1/2 inch (13 mm) from the face of the wall, otherwise special consideration shall be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. When the **specifying professional** requires the joist reaction to occur at or near the centerline of the wall or other support, then a note shall be placed on the contract drawings specifying this requirement and the specified bearing seat depth shall be increased accordingly. If the joist reaction is to occur more than 4 inches (102 mm) from the face of the wall or other support, the required bearing seat depth shall be the minimum seat depth plus a dimension at least equal to the distance the joist reaction is to occur beyond 4 inches (102 mm). The steel bearing plate shall not be less than 9 inches (229 mm) wide perpendicular to the length of the joist. The plate is to be designed by the **specifying professional** and **shall** be furnished by other than the joist manufacturer. #### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the **specifying professional** in the design of the steel support. The ends of **LH**- and **DLH**-Series Joists shall extend a distance over the steel supports not less than that shown in Table 104.4-1. JOIST SECTION NUMBER* 02 to 06 incl 2 ½" (64 mm) 4" (102 mm) 18 to 25 incl 6" (152 mm) *Last two digits of joist designation shown in Load Table. **TABLE 104.4-1** Where deemed necessary to butt opposite joists over a narrow steel support with bearing less than that noted above, special ends shall be specified, and such ends shall have positive attachment to the support, either by bolting or welding. #### 104.5 BRIDGING Top and bottom chord bridging is required and shall consist of one or both of the following types: #### (a) Horizontal Horizontal bridging lines shall consist of continuous horizontal steel members. The ℓ/r ratio of the bridging member shall not exceed 300, where ℓ is the distance in inches (millimeters) between attachments and r is the least radius of gyration of the bridging member. #### American National Standard SJI-LH/DLH-2010 #### (b) Diagonal Diagonal bridging lines shall consist of cross-bracing with a ℓ/r ratio of not more than 200, where ℓ is the distance in inches (millimeters) between connections and r is the least radius of gyration of the bracing member. Where cross-bracing members are connected at their point of intersection, the ℓ distance shall be taken as the distance in inches (millimeters) between connections at the point of intersection of the bridging members and the connections to the chords of the joists. #### (c) Bridging Lines For spans up through 60 feet (18288 mm), welded horizontal bridging shall be permitted except where the row of bridging nearest the center is required to be bolted diagonal bridging as indicated by the <u>Red shaded area</u> in the Load Table. For spans over 60 feet (18288 mm) bolted diagonal bridging shall be used as indicated by the <u>Blue and Gray shaded areas</u> of the Load Table. When the joist spacing is less than 0.70 x joist depth, bolted horizontal bridging shall be used <u>in addition</u> to bolted diagonal bridging. #### (d) Quantity and Spacing Bridging shall be properly spaced and anchored to support the decking and the employees prior to the attachment of the deck to the top chord. The maximum spacing of lines of bridging, ℓ_{brmax} shall be the lesser of, $$\ell_{brmax} = \left(124 + 0.67 d_j + 28 \frac{d_j}{L}\right) r_y, \text{ in.}$$ (104.5-1a) $$\ell_{\text{brmax}} = \left(124 + 0.026 \,d_{j} + 0.34 \,\frac{d_{j}}{L}\right) r_{y}, \, \text{mm}$$ (104.5-1b) or, $$\ell_{\text{max}} = 170 \, \text{r}_{\text{y}}$$ (104.5-2) Where: di is the steel joist depth, in. (mm) L is the joist span length, ft. (m) r_v is the out-of-plane radius of gyration of the top chord, in. (mm) The number of rows of top chord bridging shall not be less than as shown in Bridging Table 104.5-1 and the spacing shall meet the requirements of Equations 104.5-1 and 104.5-2. The number of rows of bottom chord bridging, including bridging required per Section 104.12, shall not be less than the number of top chord rows. Rows of bottom chord bridging are permitted to be spaced independently of rows of top chord bridging. The spacing of rows of bottom chord bridging shall meet the slenderness requirement of Section 103.4(a) and any specified strength requirements. For joist Section Number 21 and greater, bridging shall be installed near a bottom chord panel point or an extra web member shall be furnished to brace the bottom chord for the vertical component of the bridging force equal to the horizontal bracing force. #### American National Standard SJI-LH/DLH-2010 #### (e) Sizing of Bridging Horizontal and diagonal bridging shall be capable of resisting the nominal unfactored horizontal compressive force, P_{br} given in Equation 104.5-3. $$P_{br} = 0.0025 \text{ n A}_t F_{construction}, Ibs (N)$$ (104.5-3) Where: n = 8 for horizontal bridging n = 2 for diagonal bridging A_t = cross sectional area of joist top chord, in.² (mm²) F_{construction} = assumed ultimate stress in top chord to resist construction loads $$F_{\text{construction}} = \left(\frac{\pi^2 E}{\left(\frac{0.9 \ell_{\text{brmax}}}{r_{\text{y}}}\right)^2}\right) \ge 12.2 \text{ ksi}$$ (104.5-4a) $$\mathsf{F}_{\mathsf{construction}} = \left(\frac{\pi^2 \mathsf{E}}{\left(\frac{0.9
\,\ell_{\mathsf{brmax}}}{\mathsf{r_v}}\right)^2}\right) \ge 84.1 \mathsf{MPa} \tag{104.5-4b}$$ Where: E = Modulus of Elasticity of steel = 29,000 ksi (200,000 MPa) and $\frac{\ell_{\text{brmax}}}{r}$ is determined from Equations 104.5-1a, 104.5-1b or 104.5-2 The bridging nominal horizontal unfactored compressive forces, P_{br}, are summarized in Table 104.5-1. #### **TABLE 104.5-1** | JOIST SECTION NUMBER* | MAXIMUM SPACING OF LINES OF TOP CHORD BRIDGING | NOMINAL HO
BRACING F | | | |-----------------------|--|-------------------------|---------|--| | | | lbs | (N) | | | 02 to 03 incl | 10'-0" (3048 mm) | 400 | (1779) | | | 04 to 05 incl | 11'-0" (3353 mm) | 550 | (2447) | | | 06 to 08 incl | 13'-0" (3962 mm) up to 39'-0" (11.89 m), then 15'-0" (4572 mm) | 750 | (3336) | | | 09 | 13'-0" (3962 mm) up to 39'-0" (11.89 m), then 16'-0" (4877 mm) | 850 | (3781) | | | 10 | 14'-0" (4267 mm) up to 42'-0" (12.80 m), then 18'-0" (5486 mm) | 900 | (4003) | | | 11 | 15'-0" (4572 mm) up to 45'-0" (13.72 m), then 18'-0" (5486 mm) | 950 | (4226) | | | 12 | 17'-0" (5182 mm) up to 51'-0" (15.54 m), then 18'-6" (5639 mm) | 1100 | (4893) | | | 13 | 18'-0" (5486 mm) up to 54'-0" (16.46 m), then 21'-0" (6400 mm) | 1200 | (5338) | | | 14 | 19'-0" (5791 mm) up to 57'-0" (17.37 m), then 21'-6" (6553 mm) | 1300 | (5783) | | | 15 | 21'-0" (6400 mm) up to 63'-0" (19.20 m), then 24'-6" (7468 mm) | 1450 | (6450) | | | 16 to 17 incl | 22'-0" (6706 mm) up to 66'-0" (20.12 m), then 25'-0" (7620 mm) | 1850 | (8229) | | | 18 to 20 incl | 26'-0" (7924 mm) | 2000 | (8896) | | | 21 to 22 incl | 30'-0" (9144 mm) | 2500 | (11120) | | | 23 to 24 incl | 30'-0" (9144 mm) | 3100 | (13789) | | | 25 | 30'-0" (9144 mm) | 3500 | (15569) | | Number of lines of bridging is based on joist span dimensions. #### (f) Connections Connections to the joist chords shall be made by welding or mechanical means and shall be capable of resisting the nominal (unfactored) horizontal force, P_{br}, of Equation 104.5-3. #### (g) Bottom Chord Bearing Joists Where bottom chord bearing joists are utilized, a row of diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. #### 104.6 INSTALLATION OF BRIDGING Bridging shall support the top and bottom chords against lateral movement during the construction period and shall hold the steel joists in the approximate position as shown on the joist placement plans. The ends of all bridging lines terminating at walls or beams shall be anchored thereto. #### 104.7 BEARING SEAT ATTACHMENTS #### (a) Masonry and Concrete Ends of **LH**- and **DLH**-Series Joists resting on steel bearing plates on masonry or structural concrete shall be attached thereto, as shown in Table 104.7-1, with a minimum of two fillet welds, or with two bolts, or the equivalent. ^{*}Last two digits of joist designation shown in load table. ^{**}Nominal bracing force is unfactored and shown value is for horizontal bridging only. For horizontal bracing force for X bridging divide value shown by 4. #### (b) Steel Ends of **LH**- and **DLH**-Series Joists resting on steel supports shall be attached thereto, as shown in Table 104.7-1, with two fillet welds, or with two 3/4 inch (19 mm) bolts, or the equivalent. When **LH**- and **DLH**-Series Joists are used to provide lateral stability to the supporting member, the final connection shall be made by welding or as designated by the **specifying professional**. **TABLE 104.7-1** | JOIST SECTION
NUMBER* | FILLET WELD | BEARING SEAT BOLTS FOR
ERECTION | | | | | | | |--|---------------|------------------------------------|--|--|--|--|--|--| | 02 to 06 incl. | 2- 3/16" x 2" | 2– 3/4" (19 mm) A307 | | | | | | | | 02 to 00 inci. | (5 x 51 mm) | 2-3/4 (1911IIII) A30/ | | | | | | | | 07 to 17 incl | 2- 1/4" x 2" | 2– 3/4" (19 mm) A307 | | | | | | | | O7 to 17 inci | (6 x 51 mm) | 2-3/4 (1911111) A301 | | | | | | | | 18 to 25 incl | 2- 1/4" x 4" | 2– 3/4" (19 mm) A325 | | | | | | | | 16 to 25 inci | (6 x 102 mm) | 2-3/4 (19 Mill) A323 | | | | | | | | *Last two digits of joist designation shown in load table. | | | | | | | | | #### (c) Uplift Where uplift forces are a design consideration, roof joists shall be anchored to resist such forces (Refer to Section 104.12 Uplift). #### **104.8 JOIST SPACING** Joists shall be spaced so that the loading on each joist does not exceed the design load (LRFD or ASD) for the particular joist designation and span as shown in the applicable load tables. #### 104.9 FLOOR AND ROOF DECKS #### (a) Material Floor and roof decks shall be permitted to consist of cast-in-place or pre-cast concrete or gypsum, formed steel, wood, or other suitable material capable of supporting the required load at the specified joist spacing. #### (b) Thickness Cast-in-place slabs shall be not less than 2 inches (51 millimeters) thick. #### (c) Centering Centering for cast-in-place slabs shall be permitted to be ribbed metal lath, corrugated steel sheets, paper-backed welded wire fabric, removable centering or any other suitable material capable of supporting the slab at the designated joist spacing. Centering shall not cause lateral displacement or damage to the top chord of joists during installation or removal of the centering or placing of the concrete. #### American National Standard SJI-LH/DLH-2010 #### (d) Bearing Slabs or decks shall bear uniformly along the top chords of the joists. #### (e) Attachments The spacing of attachments along the joist top chord shall not exceed 36 inches (914 millimeters). Such attachments of the slab or deck to the top chords of joists shall be capable of resisting the forces given in Table 104.9-1. **TABLE 104.9-1** | JOIST SECTION NUMBER* | NOMINAL FORCE REQUIRED** | |--------------------------|-----------------------------------| | 02 to 04 incl. | 120 lbs/ft. (1.75 kN/m) | | 05 to 09 incl. | 150 lbs/ft. (2.19 kN/m) | | 10 to 17 incl. | 200 lbs/ft. (2.92 kN/m) | | 18 and 19 | 250 lbs/ft. (3.65 kN/m) | | 20 and 21 | 300 lbs/ft. (4.38 kN/m) | | 22 to 24 incl. | 420 lbs/ft. (6.13 kN/m) | | 25 | 520 lbs/ft. (7.59 kN/m) | | *Last two digits of inic | t decignation chown in Load Table | ^{*}Last two digits of joist designation shown in Load Table. **Nominal bracing force is unfactored. #### (f) Wood Nailers Where wood nailers are used, such nailers in conjunction with deck or slab shall be firmly attached to the top chords of the joists in conformance with Section 104.9(e). #### (g) Joist With Standing Seam Roofing or Laterally Unbraced Top Chords When the roof systems do not provide lateral stability for the joists in accordance with Section 104.9(e), i.e. as may be the case with standing seam roofs or skylights and openings, sufficient stability shall be provided to brace the joists laterally under the full design load. The compression chord shall resist the chord axial design force in the plane of the joist (i.e., x-x axis buckling) and out of the plane of the joist (i.e., y-y axis buckling). In any case where the attachment requirement of Section 104.9(e) is not achieved, out-of-plane strength shall be achieved by adjusting the bridging spacing and/or increasing the compression chord area and the y-axis radius of gyration. The effective slenderness ratio in the y-direction equals 0.94 L/r_y; where L is the bridging spacing in inches (millimeters). The maximum bridging spacing shall not exceed that specified in Section 104.5(d). Horizontal bridging members attached to the compression chords and their anchorages shall be designed for a compressive axial force of $0.001nP + 0.004P \sqrt{n} \ge 0.0025nP$, where n is the number of joists between end anchors and P is the chord design force in kips (Newtons). The attachment force between the horizontal bridging member and the compression chord shall be 0.01P. Horizontal bridging attached to the tension chords shall be proportioned so that the slenderness ratio between attachments does not exceed 300. Diagonal bridging shall be proportioned so that the slenderness ratio between attachments does not exceed 200. #### American National Standard SJI-LH/DLH-2010 #### 104.10 DEFLECTION The deflection due to the design live load shall not exceed the following: Floors: 1/360 of span. **Roofs:** 1/360 of span where a plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying professional shall give consideration to the effects of deflection and vibration* in the selection of joists. *For further reference, refer to Steel Joist Institute Technical Digest 5, Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. #### **104.11 PONDING** The ponding investigation shall be performed by the **specifying professional**. *For further reference, refer to Steel Joist Institute Technical Digest 3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and the AISC Specification for Structural Steel Buildings. #### 104.12 UPLIFT Where uplift forces due to wind are a design requirement, these forces shall be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract documents shall indicate if the net uplift is based upon LRFD or ASD. When these forces are specified, they shall be considered in the design of joists and/or bridging. A single line of **bottom chord** bridging shall be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration. *For further reference, refer to Steel Joist Institute Technical Digest 6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads." #### 104.13 INSPECTION Joists shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of these specifications. If the
purchaser wishes an inspection of the steel joists by someone other than the manufacturer's own inspectors, they shall be permitted to reserve the right to do so in their "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the joists at the manufacturing shop by the purchaser's inspectors at purchaser's expense. #### 104.14 PARALLEL CHORD SLOPED JOISTS The span of a parallel chord sloped joist shall be defined by the length along the slope. Minimum depth, load-carrying capacity, and bridging requirements shall be determined by the sloped definition of span. The Load Table capacity shall be the component normal to the joist. SECTION 105. # ERECTION STABILITY AND HANDLING* When it is necessary for the erector to climb on the joists, extreme caution shall be exercised since unbridged joists exhibit some degree of instability under the erector's weight. #### (a) Stability Requirements 1) <u>Before an employee is allowed on the steel joist</u>: BOTH ends of joists at columns (or joists designated as column joists) shall be attached to its supports. For all other joists a minimum of one end shall be attached before the employee is allowed on the joist. The attachment shall be in accordance with Section 104.7 – End Anchorage. When a bolted seat connection is used for erection purposes, as a minimum, the bolts shall be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This shall be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. - 2) On steel joists that do not require erection bridging as shown by the unshaded area of the Load Tables, only one employee shall be allowed on the steel joist unless all bridging is installed and anchored. - 3) Where the span of the steel joist is within the Red shaded area of the Load Table, the following shall apply: - a) The row of bridging nearest the mid span of the steel joist shall be bolted diagonal erection bridging; and - b) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored, unless an alternate method of stabilizing the joist has been provided; and - c) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - 4) Where the span of the steel joist is within the <u>Blue shaded area</u> of the Load Table, the following shall apply: - a) All rows of bridging shall be bolted diagonal bridging; and - b) Hoisting cables shall not be released until the two rows of bolted diagonal erection bridging nearest the third points of the steel joist are installed and anchored; and - c) No more than two employees shall be allowed on these spans until all other bridging is installed and anchored. - 5) Where the span of the steel joist is in the Gray shaded area of the Load Table, the following shall apply: - a) All rows of bridging shall be bolted diagonal bridging; and - b) Hoisting cables shall not be released until all bridging is installed and anchored; and - c) No more than two employees shall be allowed on these spans until all other bridging is installed and anchored. - 6) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide lateral stability. - 7) In the case of bottom chord bearing joists, the ends of the joist shall be restrained laterally per Section 104.5(g) before releasing the hoisting cables. - 8) After the joist is straightened and plumbed, and all bridging is completely installed and anchored, the ends of the joists shall be fully connected to the supports in accordance with Section 104.7 End Anchorage. #### American National Standard SJI-LH/DLH-2010 #### (b) Landing and Placing Loads - 1) Except as stated in paragraph 105(b)(3) of this section, no "construction loads"⁽¹⁾ shall be allowed on the steel joists until all bridging is installed and anchored, and all joist bearing ends are attached. - 2) During the construction period, loads placed on the steel joists shall be distributed so as not to exceed the capacity of the steel joists. - 3) The weight of a bundle of joist bridging shall not exceed a total of 1000 pounds (454 kilograms). The bundle of joist bridging shall be placed on a minimum of 3 steel joists that are secured at one end. The edge of the bridging bundle shall be positioned within 1 foot (0.30 m) of the secured end. - 4) No bundle of deck shall be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless the following conditions are met: - a) The contractor has first determined from a "qualified person" and documented in a site-specific erection plan that the structure or portion of the structure is capable of supporting the load; - b) The bundle of decking is placed on a minimum of 3 steel joists; - c) The joists supporting the bundle of decking are attached at both ends; - d) At least one row of bridging is installed and anchored; - e) The total weight of the decking does not exceed 4000 pounds (1816 kilograms); and - f) The edge of the bundle of decking shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. - 5) The edge of the construction load shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. #### (c) Field Welding - 1) All field welding shall be performed in accordance with the contract documents. Field welding shall not damage the joists. - 2) On cold-formed members whose yield strength has been attained by cold working, and whose as-formed strength is used in the design, the total length of weld at any one point shall not exceed 50 percent of the overall developed width of the cold-formed section. #### (d) Handling Particular attention shall be considered for the handling and erection of LH- and DLH-Series steel joists. Care shall be exercised at all times to avoid damage to the joists and accessories. Hoisting cables shall be attached at panel point locations and those locations shall be selected to minimize erection stresses. Each joist shall be adequately braced laterally before any loads are applied. If lateral support is provided by bridging, the bridging lines as defined in Section 105(a), paragraphs 2, 3, 4 and 5 shall be anchored to prevent lateral movement. #### American National Standard SJI-LH/DLH-2010 #### (e) Fall Arrest Systems Steel joists shall not be used as anchorage points for a fall arrest system unless written direction to do so is obtained from a "qualified person" (2). *For further reference, refer to Steel Joist Institute Technical Digest 9, "Handling and Erection of Steel Joists and Joist Girders." - (1) See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists January 18, 2001, Washington, D.C. for definition of "construction load". - (2) See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists January 18, 2001, Washington, D.C. for definition of "qualified person". #### **DEFINITION OF SPAN** (U. S. Customary Units) - NOTES: - 1) DESIGN LENGTH = SPAN 0.33 FT - 2) BEARING LENGTH FOR STEEL SUPPORTS SHALL NOT BE LESS THAN SHOWN IN TABLE 104.4-1; FOR MASONRY AND CONCRETE NOT LESS THAN 6 INCHES - 3) PARALLEL CHORD JOISTS INSTALLED TO A SLOPE GREATER THAN ½ INCH PER FOOT SHALL USE SPAN DEFINED BY THE LENGTH ALONG THE SLOPE. ## STANDARD LRFD LOAD TABLE #### **LONGSPAN STEEL JOISTS, LH-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD LH-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the unfactored DEAD load. In all cases the factored DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the factored LIVE load. The approximate joist weights do <u>not</u> include accessories. The RED figures in the Load Table represent the unfactored, uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the unfactored, uniform load for supplementary deflection criteria (i.e. an unfactored uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as given in the Standard ASD Load Table for Longspan Steel Joists, LH-Series. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'–0". Where the joist span is in the **BLUE SHADED** area of the Load Table, all
rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: $I_j = 26.767(W)(L^3)(10^{-6})$, where W= RED figure in the Load Table, and L = (span – 0.33) in feet. Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe factored uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe factored uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for an unfactored RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the unfactored RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table – 0.33 feet)² and divide by (the actual span – 0.33 feet)². In no case shall the calculated unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as determined from the Standard ASD Load Table for Longspan Steel Joists, LH-Series. #### LRFD | | | | | | | | | 7 | 7 4 | | | | | | | | | | | |-------------|---------------|--------|-------|----------------|-------------|-------------|-------------|-------------|--------------|------------------|------------------|------------|------------------|------------|------------|------------|------------|------------|------------------| | | | | | STANDARD | on a 50 ksi Ma | aximun | ı Yield | Streng | th - Lo | ads Sh | own In | Pound | ls Per L | _inear | Foot (p | olf) | | | | | | Joist | Approx. Wt | Depth | Max | SAFE LOAD* | | | | | | | | | | | | | | | | | Designation | in Lbs. Per | in | Load | in Lbs. | | | | | | | SPA | N IN F | EET | | | | | | | | | Linear Ft. | inches | (plf) | Between | | | | | | | | | | | 1 | | | | | | | (Joists only) | | < 22 | 22-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | | | | 18LH02 | 10 | 18 | 829 | 18240 | 702
313 | 663
284 | 627
259 | 586
234 | 550
212 | 517
193 | 486
175 | 459
160 | 433
147 | 409
135 | 388 | | | | | | 18LH03 | 11 | 18 | 919 | 20220 | 781 | 739 | 700 | 657 | 613 | 573 | 538 | 505 | 475 | 448 | 424 | | 4 | | | | | | | | | 348 | 317 | 289 | 262 | 236 | 213 | 194 | 177 | 161 | 148 | 136 | | | | | | 18LH04 | 12 | 18 | 1070 | 23550 | 906 | 856 | 802 | 750 | 703 | 660 | 619 | 582 | 547 | 516 | 487 | | | | | | 4011105 | | 4.0 | 1010 | 00040 | 403 | 367 | 329 | 296 | 266 | 242 | 219 | 200 | 182 | 167 | 153 | | | | | | 18LH05 | 15 | 18 | 1210 | 26610 | 1026
454 | 972
414 | 921
378 | 871
345 | 814
311 | 762
282 | 714
256 | 672
233 | 631
212 | 595
195 | 562
179 | | | | | | 18LH06 | 15 | 18 | 1430 | 31470 | 1213 | 1123 | 1044 | 972 | 907 | 849 | 796 | 748 | 705 | 664 | 627 | | | | | | 1011100 | 15 | 10 | 1430 | 31470 | 526 | 469 | 419 | 377 | 340 | 307 | 280 | 254 | 232 | 212 | 195 | | | | | | 18LH07 | 17 | 18 | 1485 | 32670 | 1260 | 1213 | 1170 | 1089 | 1017 | 952 | 892 | 838 | 789 | 744 | 703 | | | | | | 102.101 | | | | | 553 | 513 | 476 | 428 | 386 | 349 | 317 | 288 | 264 | 241 | 222 | | | | | | 18LH08 | 19 | 18 | 1548 | 34050 | 1314 | 1264 | 1218 | 1176 | 1137 | 1075 | 1020 | 961 | 906 | 856 | 810 | | | | | | | | | | | 577 | 534 | 496 | 462 | 427 | 387 | 351 | 320 | 292 | 267 | 246 | · · | | | | | 18LH09 | 21 | 18 | 1658 | 36480 | 1404 | 1351 | 1302 | 1257 | 1215 | 1174 | 1138 | 1069 | 1006 | 949 | 897 | | | | | | | | | | 23-25 | 616 | 571 | 527 | 491 | 458 | 418 | 380 | 346 | 316 | 289 | 266 | | | | | | 0011100 | 40 | 00 | < 23 | | 26 | 27 | 28 | 29 | 30 | 31
547 | 32
516 | 33 | 34
460 | 35 | 36 | 37 | 38 | 39
355 | 40
337 | | 20LH02 | 10 | 20 | 747 | 17190 | 663
306 | 655
303 | 646
298 | 615
274 | 582
250 | 228 | 208 | 487
190 | 174 | 436
160 | 412 | 393
136 | 373 | 355
117 | 108 | | 20LH03 | 11 | 20 | 793 | 18240 | 703 | 694 | 687 | 678 | 651 | 621 | 592 | 558 | 528 | 499 | 474 | 448 | 424 | 403 | 382 | | 2011103 | "" | 20 | 195 | 10240 | 337 | 333 | 317 | 302 | 280 | 258 | 238 | 218 | 200 | 184 | 169 | 156 | 143 | 133 | 123 | | 20LH04 | 12 | 20 | 972 | 22350 | 861 | 849 | 837 | 792 | 744 | 700 | 660 | 624 | 589 | 558 | 529 | 502 | 477 | 454 | 433 | | | | | | | 428 | 406 | 386 | 352 | 320 | 291 | 265 | 243 | 223 | 205 | 189 | 174 | 161 | 149 | 139 | | 20LH05 | 14 | 20 | 1045 | 24030 | 924 | 913 | 903 | 892 | 856 | 816 | 769 | 726 | 687 | 651 | 616 | 585 | 556 | 529 | 504 | | | | | | | 459 | 437 | 416 | 395 | 366 | 337 | 308 | 281 | 258 | 238 | 219 | 202 | 187 | 173 | 161 | | 20LH06 | 15 | 20 | 1394 | 32070 | 1233 | 1186 | 1144 | 1084 | 1018 | 952 | 894 | 840 | 790 | 745 | 703 | 666 | 631 | 598 | 568 | | 20LH07 | 17 | 20 | 1487 | 34200 | 606
1317 | 561
1267 | 521
1221 | 477
1179 | 427
41140 | 386
1066 | 351
1000 | 320
940 | 292
885 | 267
834 | 246
789 | 226
745 | 209
706 | 192
670 | 178
637 | | ZULHU7 | 17 | 20 | 1487 | 34200 | 647 | 599 | 556 | 518 | 484 | 438 | 398 | 362 | 331 | 303 | 278 | 256 | 236 | 218 | 202 | | 20LH08 | 19 | 20 | 1534 | 35280 | 1362 | 1309 | 1263 | 1219 | 1177 | 1140 | 1083 | 1030 | 981 | 931 | 882 | 837 | 795 | 754 | 718 | | | | | | | 669 | 619 | 575 | 536 | 500 | 468 | 428 | 395 | 365 | 336 | 309 | 285 | 262 | 242 | 225 | | 20LH09 | 21 | 20 | 1679 | 38610 | 1485 | 1429 | 1377 | 1329 | 1284 | 1242 | 1203 | 1167 | 1132 | 1068 | 1009 | 954 | 904 | 858 | 816 | | | | | | | 729 | 675 | 626 | 581 | 542 | 507 | 475 | 437 | 399 | 366 | 336 | 309 | 285 | 264 | 244 | | 20LH10 | 23 | 20 | 1810 | 41640 | 1602 | 1542 | 1486 | 1434 | 1386 | 1341 | 1297 | 1258 | 1221 | 1186 | 1122 | 1060 | 1005 | 954 | 906 | | | | | | | 786 | 724 | 673 | 626 | 585 | 545 | 510 | 479 | 448 | 411 | 377 | 346 | 320 | 296 | 274 | # LRFD | | | | | ST | TANDARD | ΙΟΔΟ | TARI F | FOR I | ONGSE | ΔN ST | FFL .IC | DISTS | H-SEE | RIFS | | | | | | | |--|--|--|---|---|--|---|--|--|--|--
--|---|---|--|--|---|---|---|--|--| | | | | Base | | 50 ksi Ma | | | | | | | | | | ot (plf) | | | | | | | Joist | Approx. Wt | Depth | Max | | ELOAD* | | | | | | | | | | | | | | | | | Designation | in Lbs. Per
Linear Ft. | in
inches | Load
(plf) | | Lbs.
etween | | | | | | | SPA | N IN F | EET | | | | | | | | | (Joists only) | IIICIICS | < 29 | | 9-33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | | 24LH03 | 11 | 24 | 601 | 1 | 7430 | 513 | 508 | 504 | 484 | 460 | 439 | 418 | 400 | 382 | 366 | 351 | 336 | 322 | 310 | 298 | | 0411104 | 12 | 24 | 737 | 2 | 1360 | 235
628 | 226
597 | 218
568 | 204
540 | 188
514 | 175
490 | 162 | 152
447 | 141
427 | 132 | 124
393 | 116
376 | 109
361 | 346 | 96
333 | | 24LH04 | 12 | 24 | 131 | | 1300 | 288 | 265 | 246 | 227 | 210 | 490
195 | 468
182 | 169 | 158 | 148 | 138 | 130 | 122 | 114 | 107 | | 24LH05 | 13 | 24 | 789 | 2 | 2890 | 673 | 669 | 660 | 628 | 598 | 570 | 544 | 520 | 496 | 475 | 456 | 436 | 420 | 403 | 387 | | 0.41.1100 | | | | | 0700 | 308 | 297 | 285 | 264 | 244 | 226 | 210 | 196 | 182 | 171 | 160 | 150 | 141 | 132 | 124 | | 24LH06 | 16 | 24 | 1061 | 3 | 0780 | 906
411 | 868
382 | 832
356 | 795
331 | 756
306 | 720
284 | 685
263 | 655
245 | 625
228 | 598
211 | 571
197 | 546
184 | 522
172 | 501
161 | 480
1 5 2 | | 24LH07 | 17 | 24 | 1166 | 3 | 3810 | 997 | 957 | 919 | 882 | 847 | 811 | 774 | 736 | 702 | 669 | 639 | 610 | 583 | 559 | 535 | | | | | | | | 452 | 421 | 393 | 367 | 343 | 320 | 297 | 276 | 257 | 239 | 223 | 208 | 195 | 182 | 171 | | 24LH08 | 18 | 24 | 1243 | 3 | 6060 | 1060
480 | 1015
447 | 973
416 | 933
388 | 895
362 | 858
338 | 817
314 | 780
292 | 745
272 | 712 | 682
238 | 652
222 | 625
208 | 600
196 | 576
184 | | 24LH09 | 21 | 24 | 1464 | 4 | 2450 | 1248 | 1212 | 1177 | 1146 | 1096 | 1044 | 994 | 948 | 903 | 254
861 | 822 | 786 | 751 | 720 | 690 | | | | | | | | 562 | 530 | 501 | 460 | 424 | 393 | 363 | 337 | 313 | 2 92 | 272 | 254 | 238 | 223 | 209 | | 24LH10 | 23 | 24 | 1547 | 4 | 4850 | 1323 | 1284 | 1248 | 1213 | 1182 | 1152 | 1105 | 1053 | 1002 | 955 | 912 | 873 | 834 | 799 | 766 | | 24LH11 | 25 | 24 | 1630 | 4 | 7280 | 596
1390 | 559
1350 | 528
1312 | 500
1276 | 474
1243 | 439
1210 | 406
1180 | 378
1152 | 351
1101 | 326
1051 | 304
1006 | 285
963 | 924 | 249
885 | 234
850 | | | 20 | | .000 | | | 624 | 588 | 555 | 525 | 498 | 472 | 449 | 418 | 388 | 361 | 337 | 315 | 294 | 276 | 259 | | | | | < 34 | | 4-41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | | 28LH05 | 13 | 28 | 623 | 2 | 1180 | 505 | 484 | 465 | 445 | 429 | 412 | 397 | 382 | 367 | 355 | 342 | 330 | 319 | 309 | 298 | | 28LH06 | 16 | 28 | 828 | 2 | 8140 | 219
672 | 205
643 | 192
618 | 180
592 | 169
568 | 159
546 | 150
525 | 142
505 | 133
486 | 469 | 119
451 | 436 | 107 | 102
406 | 97
393 | | | | | | | | 289 | 270 | 253 | 238 | 223 | 209 | 197 | 186 | 175 | 166 | 156 | 148 | 140 | 133 | 126 | | 28LH07 | 17 | 28 | 934 | 3 | 1770 | 757 | 726 | 696 | 667 | 640 | 615 | 591 | 568 | 547 | 528 | 508 | 490 | 474 | 457 | 442 | | 28LH08 | 18 | 28 | 1001 | 3. | 4020 | 326
810 | 305
775 | 285
744 | 267
712 | 251
684 | 236
657 | 630 | 209
604 | 197
580 | 186
556 | 176
535 | 166
516 | 158
496 | 150
478 | 142
462 | | 2021100 | 10 | 20 | 1001 | Ŭ | .020 | 348 | 325 | 305 | 285 | 268 | 252 | 236 | 222 | 209 | 196 | 185 | 175 | 165 | 156 | 148 | | 28LH09 | 21 | 28 | 1232 | 4 | 1880 | 1000 | 958 | 918 | 879 | 844 | 810 | 778 | 748 | 721 | 694 | 669 | 645 | 622 | 601 | 580 | | 201 1110 | 23 | 28 | 1347 | 1 | 5810 | 428
1093 | 400
1056 | 375
1018 | 351
976 | 329
937 | 309
900 | 291
864 | 274
831 | 258
799 | 243
769 | 228
742 | 216
715 | 204
690 | 193
666 | 183
643 | | 28LH10 | 23 | 28 | 1347 | - | 3010 | 466 | 439 | 414 | 388 | 364 | 342 | 322 | 303 | 285 | 269 | 255 | 241 | 228 | 215 | 204 | | 28LH11 | 25 | 28 | 1445 | 4 | 9140 | 1170 | 1143 | 1104 | 1066 | 1023 | 982 | 943 | 907 | 873 | 841 | 810 | 781 | 753 | 727 | 702 | | 0011110 | 27 | | | _ | | 498 | 475 | 448 | 423 | 397 | 373 | 351
1105 | 331 | 312 | 294 | 278 | 263 | 249 | 236 | 223
819 | | 28LH12 | | 28 | - | 21 | 20 | 1587 | | 3970 | 1285
545 | 1255
520 | 1227
496 | 1200
476 | 1173
454 | 1149
435 | | 1063
383 | 1023
361 | 984
340 | 948
321 | 913
303 | 880
285 | 849
270 | | | 28LH13 | 30 | 28 | 1654 | | 6250 | 1285
545
1342 | 1255
520
1311 | 496
1281 | 476
1252 | 11/3
454
1224 | 435
1198 | 408
1173 | 383
1149 | 361
1126 | 984
340
1083 | 948
321
1041 | 303
1002 | 285
964 | 849
270
930 | 256
897 | | | | | 1654 | 5 | 6250 | 545
1342
569 | 520
1311
543 | 496
1281
518 | 476
1252
495 | 454
1224
472 | 435
1198
452 | 408
1173
433 | 383
1149
415 | 361
1126
396 |
340
1083
373 | 321
1041
352 | 303
1002
332 | 285
964
314 | 270
930
297 | 256
897
281 | | 28LH13 | 30 | 28 | 1654 | 5
39-46 | 6250
47-49 | 545
1342
569
50 | 520
1311
543
51 | 496
1281
518
52 | 476
1252
495
53 | 454
1224
472
54 | 435
1198
452
55 | 408
1173
433
56 | 383
1149
415
57 | 361
1126
396
58 | 340
1083
373
59 | 321
1041
352
60 | 303
1002
332
61 | 285
964
314
62 | 930
297
63 | 256
897
281
64 | | - | | | 1654 | 5 | 6250 | 545
1342
569 | 520
1311
543 | 496
1281
518 | 476
1252
495 | 454
1224
472 | 435
1198
452 | 408
1173
433 | 383
1149
415 | 361
1126
396 | 340
1083
373 | 321
1041
352 | 303
1002
332 | 285
964
314 | 270
930
297 | 256
897
281 | | 28LH13 | 30 | 28 | 1654 | 5
39-46 | 6250
47-49 | 545
1342
569
50
507
211
568 | 520
1311
543
51
489
199
549 | 496
1281
518
52
472
189
529 | 476
1252
495
53
456
179
511 | 454
1224
472
54
441
169
493 | 435
1198
452
55
426
161
477 | 408
1173
433
56
412
153
462 | 383
1149
415
57
399
145
447 | 361
1126
396
58
385
138
432 | 340
1083
373
59
373
131
418 | 321
1041
352
60
363
125
406 | 303
1002
332
61
351
119
393 | 285
964
314
62
340
114
381 | 270
930
297
63
330
108
370 | 256
897
281
64
321
104
360 | | 28LH13
32LH06
32LH07 | 30
14
16 | 32 | 1654
< 39
647
728 | 39-46
25230
28380 | 6250
47-49
25230
28380 | 545
1342
569
50
507
211
568
235 | 520
1311
543
51
489
199
549
223 | 496
1281
518
52
472
189
529
211 | 476
1252
495
53
456
179
511
200 | 454
1224
472
54
441
169
493
189 | 435
1198
452
55
426
161
477
179 | 408
1173
433
56
412
153
462
170 | 383
1149
415
57
399
145
447
162 | 361
1126
396
58
385
138
432
154 | 340
1083
373
59
373
131
418
146 | 321
1041
352
60
363
125
406
140 | 303
1002
332
61
351
119
393
133 | 285
964
314
62
340
114
381
127 | 270
930
297
63
330
108
370
121 | 256
897
281
64
321
104
360
116 | | 28LH13
32LH06 | 30 | 28 | 1654
< 39
647 | 39-46
25230 | 6250
47-49
25230 | 545
1342
569
50
507
211
568 | 520
1311
543
51
489
199
549 | 496
1281
518
52
472
189
529 | 476
1252
495
53
456
179
511 | 454
1224
472
54
441
169
493 | 435
1198
452
55
426
161
477 | 408
1173
433
56
412
153
462 | 383
1149
415
57
399
145
447 | 361
1126
396
58
385
138
432 | 340
1083
373
59
373
131
418 | 321
1041
352
60
363
125
406 | 303
1002
332
61
351
119
393 | 285
964
314
62
340
114
381 | 270
930
297
63
330
108
370 | 256
897
281
64
321
104
360 | | 28LH13
32LH06
32LH07 | 30
14
16 | 32 | 1654
< 39
647
728 | 39-46
25230
28380 | 6250
47-49
25230
28380 | 545
1342
569
50
507
211
568
235
616
255
774 | 520
1311
543
51
489
199
549
223
595
242
747 | 496
1281
518
52
472
189
529
211
574
229
720 | 476
1252
495
53
456
179
511
200
553
216
694 | 454
1224
472
54
441
169
493
189
535 | 435
1198
452
55
426
161
477
179
517
194
648 | 408
1173
433
56
412
153
462
170
499
184
627 | 383
1149
415
57
399
145
447
162
483
175
606 | 361
1126
396
58
385
138
432
154
468
167
586 | 340
1083
373
59
373
131
418
146
453
159
568 | 321
1041
352
60
363
125
406
140
439
151
550 | 303
1002
332
61
351
119
393
133
426
144
534 | 285
964
314
62
340
114
381
127
412
137
517 | 270
930
297
63
330
108
370
121
400
131
502 | 256
897
281
64
321
104
360
116
388
125
487 | | 28LH13
32LH06
32LH07
32LH08
32LH09 | 14
16
17
21 | 28
32
32
32
32 | 1654 < 39 647 728 790 992 | 39-46
25230
28380
30810
38670 | 6250
47-49
25230
28380
30810
38670 | 545
1342
569
507
211
568
235
616
255
774
319 | 520
1311
543
51
489
199
549
223
595
242
747
302 | 496
1281
518
52
472
189
529
211
574
229
720
285 | 476
1252
495
53
456
179
511
200
553
216
694
270 | 454
1224
472
54
441
169
493
189
535
205
670
256 | 435
1198
452
55
426
161
477
179
517
194
648
243 | 408
1173
433
56
412
153
462
170
499
184
627
230 | 383
1149
415
57
399
145
447
162
483
175
606
219 | 361
1126
396
58
385
138
432
154
468
167
586
208 | 340
1083
373
59
373
131
418
146
453
159
568
198 | 321
1041
352
60
363
125
406
140
439
151
550
189 | 303
1002
332
61
351
119
393
133
426
144
534
180 | 285
964
314
62
340
114
381
127
412
137
517
172 | 270
930
297
63
330
108
370
121
400
131
502
164 | 256
897
281
64
321
104
360
116
388
125
487 | | 28LH13
32LH06
32LH07
32LH08 | 30
14
16
17 | 28
32
32
32 | 1654
< 39
647
728
790 | 39-46
25230
28380
30810 | 6250
47-49
25230
28380
30810 | 545
1342
569
50
507
211
568
235
616
255
774 | 520
1311
543
51
489
199
549
223
595
242
747 | 496
1281
518
52
472
189
529
211
574
229
720
285
796 | 476
1252
495
53
456
179
511
200
553
216
694 | 454
1224
472
54
441
169
493
189
535
205 | 435
1198
452
55
426
161
477
179
517
194
648 | 408
1173
433
56
412
153
462
170
499
184
627 | 383
1149
415
57
399
145
447
162
483
175
606 | 361
1126
396
58
385
138
432
154
468
167
586 | 340
1083
373
59
373
131
418
146
453
159
568 | 321
1041
352
60
363
125
406
140
439
151
550
189
603 | 303
1002
332
61
351
119
393
133
426
144
534
180 | 285
964
314
62
340
114
381
127
412
137
517
172
564 | 270
930
297
63
330
108
370
121
400
131
502 | 256
897
281
64
321
104
360
116
388
125
487
157 | | 28LH13
32LH06
32LH07
32LH08
32LH09 | 14
16
17
21 | 28
32
32
32
32 | 1654 < 39 647 728 790 992 | 39-46
25230
28380
30810
38670 | 6250
47-49
25230
28380
30810
38670 | 545
1342
569
50
507
211
568
235
616
255
774
319
856 | 520
1311
543
51
489
199
549
223
595
242
747
302
825 | 496
1281
518
52
472
189
529
211
574
229
720
285 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840 | 454
1224
472
54
441
169
493
189
535
205
670
256
742 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
267
783 | 408
1173
433
56
412
153
462
170
499
184
627
230
693 | 383
1149
415
57
399
145
447
162
483
175
606
219
667 | 361
1126
396
58
385
138
432
154
468
167
586
208
645
228
709 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624 | 930
297
63
330
108
370
121
400
131
502
164
546 | 256
897
281
64
321
104
360
116
388
125
487
157
529
169
585 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 | 30
14
16
17
21
21
24 | 28
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 | 39-46
25230
28380
30810
38670
42750
46830 | 47-49
25230
28380
30810
38670
42750
46830 | 545
1342
569
50
507
211
568
235
616
255
774
319
856
352
937
385 | 520
1311
543
51
489
199
549
223
595
242
747
302
825
332
903
363 |
496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
343 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840
325 | 454
1224
472
54
441
169
493
189
535
205
670
256
742
282
811
308 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
267
783
292 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263 | 361
1126
396
58
385
138
432
154
468
167
586
208
645
228
709
251 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687
239 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664
227 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206 | 270
930
297
63
330
108
370
121
400
131
502
164
546
178
604
196 | 256
897
281
64
321
104
360
116
388
125
487
157
529
169
585
187 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 | 30
14
16
17
21
21 | 28
32
32
32
32
32
32 | 1654
< 39
647
728
790
992
1096 | 39-46
25230
28380
30810
38670
42750 | 6250
47-49
25230
28380
30810
38670
42750 | 545
1342
569
50
507
211
568
235
616
255
774
319
856
352
937
385
1101 | 520
1311
543
51
489
199
223
595
242
747
302
825
332
903
363
1068 | 496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
343
1032 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840
325
996 | 454
1224
472
54
441
169
493
189
535
205
670
256
742
282
811
308
961 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
267
783
292
928 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277
897 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867 | 361
1126
396
58
385
138
432
154
468
167
586
208
645
228
709
251
838 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687
239
811 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664
227
786 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216
762 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206
738 | 270
930
297
63
330
108
370
121
400
131
502
164
546
178
604
196
715 | 256
897
281
64
321
104
360
116
388
125
487
157
529
169
585
187
694 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH10 | 30
14
16
17
21
21
24 | 28
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 | 39-46
25230
28380
30810
38670
42750
46830 | 47-49
25230
28380
30810
38670
42750
46830 | 545
1342
569
50
507
211
568
235
616
255
774
319
856
352
937
385 | 520
1311
543
51
489
199
549
223
595
242
747
302
825
332
903
363 | 496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
343 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840
325 | 454
1224
472
54
441
169
493
189
535
205
670
256
742
282
811
308 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
267
783
292 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263 | 361
1126
396
58
385
138
432
154
468
167
586
208
645
228
709
251 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687
239 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664
227 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206 | 270
930
297
63
330
108
370
121
400
131
502
164
546
178
604
196 | 256
897
281
64
321
104
360
116
388
125
487
157
529
169
585
187 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 | 30 14 16 17 21 21 24 27 30 | 32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 | 39-46
25230
28380
30810
38670
42750
46830
54960
61320 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320 | 545
1342
569
507
211
568
235
616
255
774
319
856
352
937
385
1101
450
1225
500 | 520
1311
543
51
489
199
549
223
595
242
747
302
825
332
903
363
1068
428
1201
480 | 496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
343
1032
406
1177
461 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840
325
996
384
1156
444 | 454
1224
472
54
441
169
493
189
535
205
670
256
742
282
811
308
961
364
1113
420 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
783
292
928
345
1072
397 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277
897
327
1035
376 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867
311
999
354 | 361
1126
396
58
385
138
432
154
468
167
586
208
645
228
709
251
838
295
964
336 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687
239
811
281
931
319 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664
227
786
267
900
304 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216
762
255
871
288 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206
738
243
275 | 270
930
297
63
330
108
370
121
400
131
502
164
546
178
604
196
715
232
816
262 | 256
897
281
321
104
360
116
388
125
487
157
529
169
585
187
694
221
790
249 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 | 30 14 16 17 21 21 24 27 | 32
32
32
32
32
32
32
32 | 1654 <39 647 728 790 992 1096 1201 1409 | 39-46
25230
28380
30810
38670
42750
46830
54960 | 47-49
25230
28380
30810
38670
42750
46830
54960 | 545
1342
569
507
211
568
235
616
255
774
319
856
352
937
385
1101
450
1225
500 | 520
1311
543
51
489
199
549
223
595
242
747
302
825
332
903
1068
428
1201
480
1239 | 496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
343
1032
406
1177
461
1215 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840
325
996
384
1156
444
1192 | 454
1224
472
54
441
169
493
189
535
670
256
742
282
282
281
308
961
364
1113
420
1170 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
267
783
292
928
345
1072
397
1149 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277
897
327
1035
376
1107 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867
311
999
354 | 361
1126
396
58
385
138
432
154
468
208
645
228
645
2251
838
295
964
336 | 340
1083
373
59
373
131
418
453
159
568
198
624
217
687
239
811
281
931
997 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664
227
786
267
900
304 | 303
1002
332
61
351
119
393
133
426
534
180
583
196
643
216
762
255
871
288
933 |
285
964
314
62
340
114
381
127
412
517
172
564
186
624
206
738
243
843
275
903 | 270
930
297
63
330
108
370
121
400
131
502
164
546
178
604
196
715
232
816
262
874 | 256
897
281
321
104
360
116
388
125
487
157
529
169
585
187
694
221
790
249
846 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 | 30 14 16 17 21 21 24 27 30 | 32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 | 39-46
25230
28380
30810
38670
42750
46830
54960
61320 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320 | 545
1342
569
507
211
568
235
616
255
774
319
856
352
937
385
1101
450
1225
500 | 520
1311
543
51
489
199
549
223
595
242
747
302
825
332
903
363
1068
428
1201
480 | 496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
343
1032
406
1177
461 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840
325
996
384
1156
444 | 454
1224
472
54
441
169
493
189
535
205
670
256
742
282
811
308
961
364
1113
420 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
783
292
928
345
1072
397 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277
897
327
1035
376 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867
311
999
354 | 361
1126
396
58
385
138
432
154
468
167
586
208
645
228
709
251
838
295
964
336 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687
239
811
281
931
319 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664
227
786
267
900
304 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216
762
255
871
288 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206
738
243
275 | 270
930
297
63
330
108
370
121
400
131
502
164
546
178
604
196
715
232
816
262 | 256
897
281
64
321
104
360
116
388
125
487
157
529
169
585
187
694
221
790
249 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 32LH13 | 30 14 16 17 21 21 24 27 30 33 | 32
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 | 39-46
25230
28380
30810
38670
42750
46830
54960
61320
65250 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250 | 545
1342
569
507
211
568
235
616
255
774
319
856
352
937
385
1101
450
1225
500
1264
513
532 | 520 1311 543 51 489 199 549 223 595 242 747 302 825 332 903 1068 428 1201 480 1239 495 1279 511 | 496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
343
1032
406
1177
461
1215
476
1255
492 | 476
1252
495
53
456
179
511
200
553
216
694
270
768
297
840
325
996
384
1156
444
1192
458
1231
473 | 454
1224
472
54
441
169
493
189
535
205
670
256
742
282
811
308
961
364
1113
420
1170
440
1207
454 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
267
783
292
928
345
1072
397
1149
417
1186
438 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277
897
327
1035
376
1107
395
1164
422 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867
311
999
354
1069
374
1144
407 | 361
1126
396
58
385
138
432
154
468
167
586
645
228
709
251
838
295
964
336
1032
355
1125
393 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687
239
811
281
931
997
37
1087 | 321
1041
352
60
363
125
406
140
439
151
550
603
206
664
227
786
267
900
304
964
321
1051
355 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216
762
255
871
288
933
304
1017
338 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206
738
243
275
903
290
984
322 | 270 930 297 63 330 108 370 121 400 131 502 164 546 178 604 196 715 2316 816 262 874 276 952 306 | 256
897
281
64
321
104
360
116
388
125
487
529
169
585
187
694
221
790
249
846
264
924 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 32LH13 32LH14 32LH15 | 30 14 16 17 21 21 24 27 30 33 35 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 | 39-46
25230
28380
30810
38670
42750
46830
54960
63120
65250
43-46 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57 | 545
1342
569
50
507
211
568
235
616
255
774
319
856
352
937
385
1101
450
1225
500
1264
515
1305
532
58 | 520 1311 543 51 489 199 223 595 242 747 302 825 332 903 363 1068 428 1201 480 1239 495 1279 511 59 | 496 1281 518 52 472 189 529 211 574 229 285 796 315 870 343 1032 406 1177 461 1215 476 1255 492 60 | 476
1252
495
53
456
179
551
200
553
216
694
270
768
297
840
325
996
384
1156
444
1192
458
1231
473
61 | 454
1224
472
54
441
169
493
189
535
670
256
742
282
811
364
1113
420
1170
440
1207
440
1207
454
62 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
783
292
928
345
1072
397
1149
417
1188
63 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277
897
327
1035
376
1107
395
1164
422
64 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867
311
999
354
1069
374
1144
407
65 | 361
11126
396
58
385
138
432
154
468
167
586
208
645
228
709
251
838
295
964
336
1032
355
1125
393
66 | 340
1083
373
59
373
131
418
448
453
159
624
217
687
239
811
281
931
319
997
337
1087
374
67 | 321
1041
363
363
125
406
140
439
1550
189
603
206
664
227
786
267
900
304
321
1055
68 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216
762
255
871
288
933
304
1017
338
69 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206
738
843
275
903
290
984
322
70 | 270 930 297 63 330 108 370 121 400 131 502 164 546 715 232 816 262 874 276 952 306 71 | 256
897
64
321
104
360
116
388
125
487
157
529
169
585
187
694
221
790
249
249
246
264
924
72 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 32LH13 | 30 14 16 17 21 21 24 27 30 33 | 32
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 | 39-46
25230
28380
30810
38670
42750
46830
54960
61320
65250 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250 | 545
1342
569
50
507
211
568
235
616
255
774
319
856
352
937
385
1101
450
1225
500
1264
515
1305
532
58
438 | 520
1311
543
51
489
199
549
223
595
242
747
302
825
332
903
1068
428
1201
480
1239
1279
511
51279
513
513
514
514
514
514
514
514
514
514 | 496
1281
518
52
472
189
211
574
229
211
574
229
285
796
343
1032
406
1177
461
1215
476
1255
492 | 476 1252 495 53 456 179 511 200 553 216 694 270 768 297 840 325 996 384 1156 444 1192 458 1231 473 61 | 454
1224
472
54
441
169
493
189
535
670
256
670
282
811
308
961
364
420
1170
440
1207
454
62
387 | 435
1198
452
55
426
161
179
517
194
648
243
777
783
292
928
1072
397
1149
447
1186
438
376 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
897
327
1035
376
1107
395
1164
422
64 |
383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867
311
1069
354
107
407
65
355 | 361
1126
58
396
58
385
138
432
154
468
208
645
709
251
1838
295
964
336
1132
355
1125
393
366
345 | 340
1083
373
59
373
131
418
146
453
159
568
198
624
217
687
239
811
281
319
997
1087
37
1087
37
67 | 321
1041
352
60
363
125
406
140
439
151
550
189
603
206
664
227
786
267
900
304
964
321
1051
356
8 | 303
1002
332
61
351
119
393
133
426
144
534
180
66
762
255
871
288
933
304
1017
338
69
318 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206
738
243
275
903
984
329
984
327
70 | 270 930 297 63 330 108 370 121 400 131 502 165 178 604 196 262 874 276 952 306 71 301 | 256
897
281
64
321
104
360
116
388
125
529
585
187
790
249
249
292
292
294 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 32LH13 32LH14 32LH15 | 30 14 16 17 21 21 24 27 30 33 35 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 | 39-46
25230
28380
30810
38670
42750
46830
54960
63120
65250
43-46 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57 | 545
1342
569
50
507
211
568
235
616
255
774
319
856
352
937
385
1101
450
1225
500
1264
515
1305
532
58 | 520 1311 543 51 489 199 223 595 242 747 302 825 332 903 363 1068 428 1201 480 1239 495 1279 511 59 | 496 1281 518 52 472 189 529 211 574 229 285 796 315 870 343 1032 406 1177 461 1215 476 1255 492 60 | 476
1252
495
53
456
179
551
200
553
216
694
270
768
297
840
325
996
384
1156
444
1192
458
1231
473
61 | 454
1224
472
54
441
169
493
189
535
670
256
742
282
811
364
1113
420
1170
440
1207
440
1207
454
62 | 435
1198
452
55
426
161
477
179
517
194
648
243
717
783
292
928
345
1072
397
1149
417
1188
63 | 408
1173
433
56
412
153
462
170
499
184
627
230
693
254
757
277
897
327
1035
376
1107
395
1164
422
64 | 383
1149
415
57
399
145
447
162
483
175
606
219
667
240
732
263
867
311
999
354
1069
374
1144
407
65 | 361
11126
396
58
385
138
432
154
468
167
586
208
645
228
709
251
838
295
964
336
1032
355
1125
393
66 | 340
1083
373
59
373
131
418
448
453
159
624
217
687
239
811
281
931
319
997
337
1087
374
67 | 321
1041
363
363
125
406
140
439
1550
189
603
206
664
227
786
267
900
304
321
1055
68 | 303
1002
332
61
351
119
393
133
426
144
534
180
583
196
643
216
762
255
871
288
933
304
1017
338
69 | 285
964
314
62
340
114
381
127
412
137
517
172
564
186
624
206
738
843
275
903
290
984
322
70 | 270 930 297 63 330 108 370 121 400 131 502 164 546 715 232 816 262 874 276 952 306 71 | 256
897
64
321
104
360
116
388
125
487
157
529
169
585
187
694
221
790
249
249
246
264
924
72 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 32LH14 32LH15 36LH07 | 30 14 16 17 21 21 24 27 30 33 35 16 18 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 | 5
39-46
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
43-46
25350
27900 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57
25350
27900 | 545
1342
569
50
50
507
231
568
235
616
625
774
319
8856
352
937
1101
1225
500
1264
515
1305
532
438
438
438
438
438
438
438
438
438
438 | 520
13111
543
51
489
595
595
595
242
747
73
302
825
332
903
1068
428
1239
495
1279
511
1279
511
188
466
185 | 496
1281
518
52
472
211
574
229
720
315
870
345
870
1215
461
1215
492
492
492
493
494
494
495
494
495
497
497
497
497
497
497
497
497
497
497 | 476
1252
495
53
456
553
456
553
216
694
270
768
297
840
227
996
384
1192
458
1231
473
399
153
439
439
439 | 454
1224
472
54
441
169
493
189
535
670
256
670
258
811
308
961
1170
1207
440
1207
454
428
387
146
62
387
146
62 | 435
1198 452
452
426
426
477
179
517
1194
648
243
777
783
292
928
345
1072
397
1149
418
63
376
140
441
414
4153 | 408
1173
433
56
412
452
170
499
184
627
757
230
693
254
757
327
11035
376
11107
395
11164
422
422
403
404
404
404
404
404
405
406
406
406
407
407
407
407
407
407
407
407
407
407 | 383
1149
415
57
399
145
447
162
240
732
263
867
311
1069
354
1069
374
1144
407
65
5355
128
390 | 361
1126
58
385
58
385
138
432
154
468
468
208
645
228
645
228
1032
393
305
1125
393
366
345
122
379 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 1087 337 1087 336 117 369 128 | 321
1041
352
60
363
363
125
406
140
439
151
550
206
662
227
786
627
786
207
304
964
321
1051
355
68
327
112 | 303
1002
61
351
119
393
133
426
534
144
534
196
643
393
216
762
255
871
288
933
304
1017
389
318
1017
389
318
1017
349
349
349
349
349
349
349
349
349
349 | 285
964
314
62
340
114
381
127
412
137
517
517
52
564
186
624
206
208
209
984
322
70
310
103
340 | 270 930 63 330 108 370 121 400 131 502 164 546 178 604 198 1816 262 874 276 952 306 971 301 99 3331 | 256
897
281
64
321
104
360
116
388
125
487
529
169
249
249
249
924
292
292
294
95 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 | 30 14 16 17 21 24 27 30 33 35 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 39 647 728 790 992 1096 1201 1409 1572 1618 1673 43 590 | 39-46
25230
28380
30810
38670
42750
46830
54960
63120
65250
43-46
25350 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
65250
47-56 57
25350 | 545
1342
569
50
507
211
568
235
616
255
774
319
385
1101
450
1225
58
1305
50
50
507
507
507
508
508
509
774
450
509
509
509
509
509
509
509
509
509
5 | 520
1311
543
51
489
223
595
595
242
747
302
825
332
903
1068
428
1201
480
1239
495
511
595
511
68
486
486
486
595
595
595
595
595
595
595
595
595
59 | 496
1281
518
52
472
189
529
211
574
229
720
285
796
315
870
1032
406
461
1215
476
492
60
453
495
60
579 | 476
1252
495
53
456
179
551
200
553
216
694
270
325
996
384
1156
434
41192
458
1231
473
458
153
458
153
458
154
155
155
155
155
155
155
155
155
155 | 454
1224
472
54
441
169
493
189
535
670
256
670
256
811
1113
420
11170
440
1207
454
46
62
426
62
426
66
67
427
447
447
447
447
447
447
447
447
44 | 435
1198
452
55
426
161
477
179
517
717
267
783
345
1072
928
417
11186
438
63
376
140
444
444
445
153
528 | 408
11773
433
56
412
153
462
170
499
184
627
230
254
757
7277
1035
327
1107
492
64
422
64
422
64
442
643
644
644
644
644
644
644
644
644
644 | 383
1149
415
57
399
145
447
162
249
175
606
667
240
732
263
867
311
1069
354
407
65
128
390
407
407
407
407
407
407
407
407
407
40 |
361
1126
58
396
58
385
138
432
154
468
167
586
645
228
709
964
336
1032
393
66
1125
393
446
345
1125
393
446
346
346
346
346
346
346
346
346
34 | 340
1083
373
373
373
131
418
146
453
159
568
198
624
217
687
239
811
281
931
319
997
337
467
1087
374
67
1087
374
67
1087
374
67
1087
374
67
1087
374
67
1087
374
67
1087
374
67
1087
374
67
67
67
67
67
67
67
67
67
67
67
67
67 | 321
1041
352
60
363
3125
406
140
439
206
664
227
786
227
786
227
786
227
786
227
786
227
1051
355
68
321
1051
355
68
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
439
321
321
321
321
321
321
321
321
321
321 | 303
1002
61
351
119
393
133
426
534
480
583
196
643
215
762
225
871
288
933
304
1017
338
69
933
107
349
45
46
47
47
47
47
47
47
47
47
47
47
47
47
47 | 285
964
314
62
340
114
381
127
412
517
717
22
206
624
42
206
738
243
290
984
322
70
103
340
103
340
103
433
433
433
434
434
434
434
434
434
4 | 270
930
63
330
108
370
121
400
131
502
164
178
604
178
604
232
242
306
71
301
99
331
109
423 | 256
897
281
64
321
104
360
116
388
487
157
529
169
585
585
291
249
249
249
249
292
292
294
294
294
294 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 32LH14 32LH15 36LH07 | 30 14 16 17 21 21 24 27 30 33 35 16 18 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 | 5
39-46
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
43-46
25350
27900 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57
25350
27900 | 545
1342
569
50
50
507
231
568
235
616
625
774
319
8856
352
937
1101
1225
500
1264
515
1305
532
438
438
438
438
438
438
438
438
438
438 | 520
13111
543
51
489
595
595
595
242
747
73
302
825
332
903
1068
428
1239
495
1279
511
1279
511
188
466
185 | 496
1281
518
52
472
211
574
229
720
315
870
343
406
1215
476
461
1215
492
492
492
493
494
494
495
494
495
497
497
497
497
497
497
497
497
497
497 | 476
1252
495
53
456
553
456
553
216
694
270
768
297
840
227
996
384
1192
458
1231
473
399
153
439
439
439 | 454
1224
472
54
441
169
493
189
535
670
256
670
258
811
308
961
1170
1207
440
1207
454
428
387
146
62
387
146
62 | 435
1198 452
452
426
426
477
179
517
1194
648
243
777
783
292
928
345
1072
397
1149
418
63
376
140
441
414
4153 | 408
1173
433
56
412
452
170
499
184
627
757
230
693
254
757
327
11035
376
11107
395
11164
422
422
403
404
404
404
404
404
405
406
406
406
407
407
407
407
407
407
407
407
407
407 | 383
1149
415
57
399
145
447
162
240
732
263
867
311
1069
354
1069
374
1144
407
65
5355
128
390 | 361
1126
58
385
58
385
138
432
154
468
468
208
645
228
645
228
1032
393
305
1125
393
366
345
122
379 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 1087 337 1087 336 117 369 128 | 321
1041
352
60
363
363
125
406
140
439
151
550
206
662
227
786
627
786
207
304
964
321
1051
355
68
327
112 | 303
1002
61
351
119
393
133
426
534
144
534
196
643
318
762
255
871
288
933
304
1017
389
318
1017
389
318
1017
389
318
1017
389
318
1017
349
349
349
349
349
349
349
349
349
349 | 285
964
314
62
340
114
381
127
412
137
517
517
52
564
186
624
206
208
209
984
322
70
310
103
340 | 270 930 63 330 108 370 121 400 131 502 164 546 178 604 198 1816 262 874 276 952 306 971 301 99 3331 | 256
897
281
64
321
104
360
116
388
125
487
529
169
249
249
249
924
292
292
294
95 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH08 36LH09 36LH00 | 30 14 16 17 21 24 27 30 33 35 16 18 21 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 832 916 | 39-46
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
43-46
25350
27900
35760 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57
25350
27900
35760 | 545
1342
569
50
507
211
568
235
616
2255
774
319
856
352
937
725
50
1265
50
1265
515
1305
532
58
438
177
481
494
616
247
681
273 | 520
13111
543
51
489
223
595
595
242
747
302
825
332
903
1068
428
1201
480
1239
495
511
595
660
660
660 | 496
1281
518
52
472
189
529
211
574
229
720
315
870
1032
406
451
476
11215
476
60
453
492
60
579
60
60
639
224 | 476
1252
495
53
456
57
179
553
216
694
270
325
996
384
1192
458
1231
473
61
458
1231
473
458
153
458
153
458
153
154
155
155
155
155
155
155
155
155
155 | 454
1224
441
169
483
189
535
670
256
670
256
308
961
304
420
1170
454
420
426
62
61
601
601
625 | 435
1198
452
55
426
161
477
179
517
783
345
1072
928
345
1072
928
417
1186
438
438
417
414
414
414
415
528
195
528
195
528
195
528
195
528
195
528
528
528
528
528
528
528
528
528
52 | 408
11773
433
56
412
153
462
170
499
184
627
230
254
757
7277
1035
376
1107
395
1164
422
64
136
136
136
136
137
186
137
186
186
187
187
187
187
187
187
187
187
187
187 | 383
1149
415
57
399
145
447
162
249
175
606
667
240
372
263
3867
311
1144
407
65
128
390
497
179
179
179
179
179
179
179
179
179
1 | 361
1126
58
396
58
385
154
468
167
586
6208
295
228
709
964
336
1032
393
66
1125
393
484
171
1535 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 337 67 336 6117 369 128 471 163 520 180 | 321
1041
352
60
363
3125
406
140
439
206
664
267
786
227
786
227
786
227
786
321
321
321
321
321
321
321
321
321
321 | 303
1002
61
351
119
393
133
426
534
480
583
196
643
215
762
225
871
288
933
304
1017
338
69
107
349
118
445
150
445
150
445
150
445
150
445
150
160
160
160
160
160
160
160
160
160
16 | 285
964
314
62
340
114
381
127
412
517
717
22
206
624
186
624
243
243
290
984
322
70
103
340
103
340
433
443
443
443
443
448
448
480 | 270
930
63
330
108
370
121
400
131
502
164
178
604
178
604
178
232
242
306
71
301
99
331
199
423
138
468 | 256
897
281
64
321
104
360
116
388
487
157
529
169
585
529
187
694
221
790
249
95
322
294
95
322
412
133
454
412 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH07 | 30 14 16 17 21 21 24 27 30 33 35 16 18 21 | 32
32
32
32
32
32
32
32
32
32
32
32
32
3 | 1654 <39 647 728 790 992 1096 1201 1409 1572 1618 1673 590 649 | 5
39-46
25230
28380
30810
38670
42750
46830
54960
63120
65250
43-46
25350
27900
35760 |
6250
47-49
25230
28380
30810
38670
42750
46830
61320
63120
65250
47-56 57
25350
27900
35760 | 545
1342
569
50
50
507
211
568
225
774
450
1225
500
1225
500
1264
515
1305
532
54
54
616
616
616
616
616
617
617
618
618
618
618
618
618
618
618
618
618 | 520
13111
543
543
549
549
549
5223
302
825
302
825
302
1201
480
1239
495
1279
59
424
486
185
595
595
595
660
720 | 496
1281
518
52
472
211
189
529
211
229
720
345
796
343
1032
406
1177
461
1215
476
1255
60
453
176
60
453
176
639
697 | 476
1252
495
53
456
517
906
270
768
297
768
297
325
996
444
1192
458
1231
1473
439
168
449
161
458
161
461
461
461
461
461
461
461
461
461 | 454
1224
441
169
493
189
205
670
252
262
282
282
282
1113
364
1113
420
1207
454
460
160
601
601
601
601
602
603
603
603
603
603
603
603
603
603
603 | 436
1198
452
452
456
426
161
477
179
517
194
648
243
717
267
783
292
928
345
1072
397
1186
63
376
438
441
415
528
195
195
195
195
195
195
195
195
195
195 | 408
11773
433
56
412
499
184
627
757
230
693
254
499
184
627
757
277
1035
376
64
366
64
422
64
422
64
426
64
426
64
64
65
64
64
64
64
64
64
64
64
64
64
64
64
64 | 383
1149
415
57
399
145
447
162
240
867
240
867
326
335
1144
407
65
355
329
409
409
409
409
409
409
409
409
409
40 | 361
1126
58
395
58
385
133
432
154
468
167
586
645
228
964
336
1032
355
1125
393
66
345
1125
379
134
484
484
484
487
487
487
487
487
487
48 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 337 1087 374 67 336 117 369 128 471 163 520 180 567 | 321 1041 1041 352 60 363 363 125 406 140 439 603 206 664 627 786 694 327 786 68 327 1051 112 358 123 358 123 358 123 358 123 358 123 358 123 358 123 358 123 358 123 358 | 303
1002
61
351
119
393
133
426
643
196
643
216
762
255
871
288
69
318
69
318
445
454
454
456
456
456
457
457
457
457
457
457
457
457
457
457 | 285 964 114 381 127 172 564 186 624 243 275 593 340 290 984 433 275 310 340 113 433 340 1159 522 | 270 930 297 63 330 108 370 121 400 131 502 164 546 178 604 178 816 262 816 276 952 306 71 301 109 99 331 109 423 138 466 466 465 152 508 | 256
897
281
64
321
1104
360
1116
582
169
585
169
249
249
292
472
294
412
292
294
412
133
454
495 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH08 36LH09 36LH10 36LH10 | 30 14 16 17 21 21 24 27 30 33 35 16 18 21 21 23 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 832 916 1000 | 5
39-46
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
43-46
25350
27900
35760
39390
42990 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
27900
35760
39390 | 545
1342
569
50
50
507
231
568
235
616
352
235
374
450
1101
1225
500
1264
450
127
481
1305
532
438
438
438
438
438
438
438
438
438
438 | 520
13111
543
543
595
549
223
595
595
242
242
747
747
302
825
332
1068
428
428
1201
480
1239
495
1279
595
595
595
595
595
595
595
595
595
5 | 496
1281
518
52
472
229
211
574
229
720
315
870
343
406
1177
461
1215
492
476
60
411
60
453
456
463
464
463
464
463
464
463
464
463
463 | 476
1252
495
53
456
517
200
768
297
778
440
297
778
440
325
996
384
1192
458
1231
473
399
153
499
168
61
61
694
444
61
61
61
61
61
61
61
61
61
61
61
61
61 | 454
1224
472
54
441
169
493
189
255
670
256
670
258
811
136
420
1170
454
440
1207
454
166
160
166
166
166
166
166
166
166
166 | 436
1198 452
452
452
426
426
161
477
179
517
194
648
243
377
773
397
1149
438
438
438
438
438
441
415
528
528
583
215
583
215
637
234 | 408
11773
433
56
412
415
482
170
499
184
627
757
227
897
327
11035
376
1107
395
11164
422
402
404
404
405
405
405
405
405
405
405
405 | 383
1149
415
57
399
447
1162
24
483
175
606
219
667
240
354
1069
354
1069
354
1144
407
65
355
128
399
140
499
197
500
197
197
198
198
199
199
199
199
199
199
199
199 | 361
1126
58
396
58
385
432
154
468
468
208
645
228
838
295
1032
355
1125
393
366
345
122
393
134
484
484
125
125
126
127
127
127
127
127
127
127
127
127
127 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 1087 374 67 336 117 369 128 471 163 520 180 567 | 321
1041
352
60
363
363
125
406
140
439
151
550
206
664
227
786
603
304
964
1051
321
1051
325
68
327
1125
59
900
304
964
1051
1051
1051
1051
1051
1051
1051
105 | 303
1002
61
351
119
393
426
144
1534
196
643
216
762
255
318
1017
338
933
196
69
318
1017
338
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
348
348
348
348
348
348
348
348
348 | 285
964
314
62
340
114
381
127
412
157
554
186
624
206
738
243
275
903
310
103
340
113
433
444
480
159
522
173 | 270 930 930 297 63 330 108 370 121 400 131 502 164 546 178 604 188 604 198 262 874 276 952 306 97 11 301 99 423 331 109 423 508 466 152 508 | 256
8977
2811
64
3211
104
360
116
388
125
585
585
585
694
221
249
924
924
924
292
294
95
322
104
412
413
445
446
495 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH08 36LH09 36LH00 | 30 14 16 17 21 24 27 30 33 35 16 18 21 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 832 916 | 39-46
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
43-46
25350
27900
35760 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57
25350
27900
35760 | 545
1342
569
50
50
507
211
568
225
774
450
1225
500
1225
500
1264
515
1305
532
54
54
616
616
616
616
616
617
617
618
618
618
618
618
618
618
618
618
618 | 520
13111
543
543
549
549
549
5223
302
825
302
825
302
1201
480
1239
495
1279
59
424
486
185
595
595
595
660
720 |
496
1281
518
52
472
211
189
529
211
229
720
345
796
343
1032
406
1177
461
1215
476
1255
60
453
176
60
453
176
639
697 | 476
1252
495
53
456
517
906
270
768
297
768
297
325
996
444
1192
458
1231
1473
439
168
449
161
458
161
461
461
461
461
461
461
461
461
461 | 454
1224
441
169
493
189
205
670
252
262
282
282
282
1113
364
1113
420
1207
454
460
160
601
601
601
601
601
601
601
601
6 | 436
1198
452
452
456
426
161
477
179
517
194
648
243
717
267
783
292
928
345
1072
397
1186
63
376
438
441
415
528
195
195
195
195
195
195
195
195
195
195 | 408
11773
433
56
412
499
184
627
757
230
693
254
499
184
627
757
277
1035
376
64
366
64
422
64
422
64
426
64
426
64
64
65
64
64
64
64
64
64
64
64
64
64
64
64
64 | 383
1149
415
57
399
145
447
162
240
867
240
867
326
335
1144
407
65
355
329
409
409
409
409
409
409
409
409
409
40 | 361
1126
58
395
58
385
133
432
154
468
167
586
645
228
964
336
1032
355
1125
393
66
345
1125
379
134
484
484
484
487
487
487
487
487
487
48 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 337 1087 374 67 336 117 369 128 471 163 520 180 567 | 321 1041 1041 352 60 363 363 125 406 140 439 603 206 664 627 786 694 327 786 68 327 1051 112 358 123 358 123 358 123 358 123 358 123 358 123 358 123 358 123 358 123 358 | 303
1002
61
351
119
393
133
426
643
196
643
216
762
255
871
288
69
318
69
318
445
454
454
456
456
456
457
457
457
457
457
457
457
457
457
457 | 285 964 114 381 127 172 564 186 624 243 275 593 340 290 984 433 275 310 340 113 433 340 1159 522 | 270 930 297 63 330 108 370 121 400 131 502 164 546 178 604 178 816 262 816 276 952 306 71 301 109 99 331 109 423 138 466 466 465 152 508 | 256
897
281
64
321
1104
360
1116
582
169
585
169
249
249
292
472
294
412
292
294
412
133
454
495 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH08 36LH09 36LH10 36LH10 | 30 14 16 17 21 21 24 27 30 33 35 16 18 21 21 23 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 832 916 1000 | 5
39-46
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
43-46
25350
27900
35760
39390
42990 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
27900
35760
39390 | 545
1342
569
50
50
507
231
235
616
352
235
374
450
1101
450
1264
515
500
1264
438
177
481
194
681
273
889
889
889
889
889
889
889
889
889
88 | 520
13111
543
543
549
549
549
522
302
825
302
825
303
1068
428
428
428
429
1239
495
1279
424
188
597
596
660
260
260
260
260
270
270
270
270
270
270
270
270
270
27 | 496 1281 518 52 472 211 574 229 211 574 229 315 870 315 870 315 870 461 1215 60 411 160 411 60 411 67 69 492 488 835 697 269 8835 | 476
1252
495
53
456
517
200
778
216
694
427
778
840
297
788
297
788
441
1192
458
1231
473
473
499
153
61
61
694
444
444
61
61
61
61
61
61
61
61
61
61
61
61
61 | 454
1224
441
169
493
189
255
670
256
670
258
811
1364
420
1170
454
440
1207
454
160
62
160
160
160
160
160
160
160
160
160
160 | 436
1198 452
452
452
426
426
161
477
179
517
184
448
243
345
1072
397
1149
438
438
438
438
438
441
415
528
528
637
762
244
762
247
267
267
267
279
288
288
248
249
279
288
288
288
288
288
288
288
288
288
28 | 408
11773
433
56
412
415
462
170
499
184
627
757
327
11035
376
1107
395
11164
422
426
446
134
457
158
158
158
158
158
158
158
158
158
158 | 383
1149
415
57
399
145
447
1162
249
354
1069
354
1069
354
1069
355
128
355
128
399
140
499
197
550
197
197
550
197
197
198
198
198
198
198
198
198
198
198
198 | 361
1126
58
396
58
385
432
154
468
468
208
645
228
838
295
1032
355
1125
393
366
345
122
123
124
366
370
370
370
370
370
370
370
370
370
370 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 1087 374 67 336 117 369 128 471 163 520 180 567 196 | 321
1041
352
60
363
363
125
406
140
439
151
550
206
664
227
786
267
900
304
964
1051
327
1125
58
900
304
964
1051
1051
1051
1051
1051
1051
1051
105 | 303
1002
61
351
119
393
426
144
1534
180
180
583
196
643
215
762
255
318
1017
338
1017
338
1017
338
1017
338
1017
338
1017
338
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
349
349
349
349
349
349
349
349
349
349 | 285 964 314 62 340 311 114 381 127 412 137 517 517 554 186 624 206 738 433 27 70 310 103 340 113 433 340 115 952 2173 618 204 732 | 270 930 930 297 63 330 108 370 121 400 131 502 164 546 178 604 188 604 198 262 874 301 99 1331 109 423 331 109 423 508 660 600 195 712 | 256
897
281
64
321
104
360
116
388
125
589
585
589
585
694
221
249
924
924
924
292
294
95
169
924
412
294
95
169
94
412
169
94
412
169
96
97
97
97
97
97
97
97
97
97
97
97
97
97 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH08 36LH09 36LH10 36LH11 36LH11 36LH11 | 30 14 16 17 21 21 24 27 30 33 35 16 18 21 21 23 25 30 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 832 916 1000 1197 1407 | 5
39-46
25230
28380
30810
38670
42750
46830
54960
61320
65250
43-46
25350
27900
35760
39390
42990
51450
60510 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57
25350
27900
35760
39390
42990
51450
60510 | 545
1342
569
50
507
211
568
235
5616
352
235
352
335
345
365
1101
450
1264
515
1305
532
438
177
481
616
681
247
742
89
374
49
681
247
49
49
49
49
49
49
49
49
49
49
49
49
49 | 520
13111
543
51
489
223
595
595
242
2747
747
302
825
332
903
1068
428
1201
480
1239
495
595
595
595
660
260
260
283
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
338
862
866
866
866
866
866
866
866
866
86 | 496 1281 518
52 472 189 529 211 574 229 720 315 870 1032 406 1215 476 1255 492 60 453 176 639 248 697 326 835 322 8836 836 837 836 | 476 1252 495 53 456 495 51 179 511 200 553 456 694 270 768 297 840 227 325 996 334 41192 458 1231 473 399 153 439 153 61 398 561 214 61 399 561 307 810 307 951 | 454
1224
441
169
483
189
535
670
256
670
258
811
1207
440
1207
454
420
420
426
62
387
146
62
387
146
420
544
420
544
420
544
420
547
448
448
449
449
449
449
449
449
449
449 | 435
1198 452
452
452
426
477
179
517
1194
648
243
345
1072
397
1149
417
1186
438
63
376
140
414
414
415
528
155
637
762
279
894
894
894
827 | 408
11773
433
56
412
153
462
170
499
184
627
230
254
757
327
11035
395
1164
422
64
402
62
63
366
134
402
62
63
63
63
63
63
63
63
63
63
63
63
63
63 | 383
1149
415
57
399
145
447
162
483
367
263
867
311
1069
354
1069
354
1144
407
65
128
390
199
199
199
199
199
199
199
199
197
197 | 361
1126
58
385
58
138
432
154
468
167
586
628
228
709
964
336
1032
255
1125
393
366
1032
122
379
148
148
148
148
158
168
168
168
168
168
168
168
168
168
16 | 340 1083 373 373 373 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 997 337 1087 374 67 128 471 163 520 180 567 196 675 232 796 6273 | 321 1041 1041 352 60 363 363 125 500 140 439 151 550 206 664 267 786 227 786 287 304 964 321 1051 355 68 327 112 358 459 157 173 552 227 774 188 665 222 774 262 | 303
1002
61
351
119
393
133
144
534
180
583
196
643
318
1017
338
69
333
304
1017
338
69
318
107
349
69
349
118
69
69
318
118
445
156
166
167
168
168
168
168
168
168
168
168
168
168 | 285 964 314 62 340 311 114 381 127 412 517 172 206 624 186 624 206 738 243 275 903 340 103 340 103 340 159 522 70 618 204 732 240 732 240 | 270 930 63 330 108 370 121 400 131 502 164 178 604 178 604 232 231 301 99 331 138 605 152 508 600 195 712 231 | 256
897
281
64
321
104
360
116
388
487
157
694
221
169
249
249
25
25
26
487
26
487
26
487
487
487
487
487
487
487
487
487
487 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH08 36LH09 36LH10 36LH10 36LH11 | 30 14 16 17 21 21 24 27 30 33 35 16 18 21 21 23 25 | 32
32
32
32
32
32
32
32
32
32
32
32
36
36
36
36 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 832 916 1000 1197 | 39-46
25230
28380
30810
38670
42750
46830
54960
63120
65250
43-46
25350
27900
35760
39390
42990
51450 | 6250 47-49 25230 28380 30810 38670 42750 46830 54960 61320 65250 47-56 57 25350 27900 35760 39390 42990 51450 | 545
1342
569
50
50
507
231
235
616
352
235
374
450
1101
450
1264
515
500
1264
438
177
481
194
681
273
889
889
889
889
889
889
889
889
889
88 | 520
13111
543
543
549
549
549
522
302
825
302
825
303
1068
428
428
428
429
1239
495
1279
4185
597
727
660
260
260
260
260
260
260
260
260
260 | 496 1281 518 52 472 211 574 229 211 574 229 315 870 315 870 315 870 461 1215 60 411 160 411 60 411 67 69 492 488 835 697 269 8835 | 476
1252
495
53
456
517
200
778
216
694
427
778
840
297
788
297
788
441
1192
458
1231
473
473
499
153
61
61
694
444
444
61
61
61
61
61
61
61
61
61
61
61
61
61 | 454
1224
441
169
493
189
255
670
256
670
258
811
1364
420
1170
454
440
1207
454
160
62
160
160
160
160
160
160
160
160
160
160 | 436
1198 452
452
452
426
426
161
477
179
517
184
448
243
345
1072
397
1149
438
438
438
438
438
441
415
528
528
637
762
244
762
247
267
267
267
279
288
288
248
249
279
288
288
288
288
288
288
288
288
288
28 | 408
11773
433
56
412
415
462
170
499
184
627
757
327
11035
376
1107
395
11164
422
426
446
134
457
158
158
158
158
158
158
158
158
158
158 | 383
1149
415
57
399
145
447
1162
249
354
1069
354
1069
354
1069
355
128
355
128
399
140
499
197
550
197
197
550
197
197
198
198
198
198
198
198
198
198
198
198 | 361
1126
58
396
58
385
432
154
468
468
208
645
228
838
295
1032
355
1125
393
366
345
122
123
124
366
370
370
370
370
370
370
370
370
370
370 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 1087 374 67 336 117 369 128 471 163 520 180 567 196 | 321
1041
352
60
363
363
125
406
140
439
151
550
206
664
227
786
267
900
304
964
1051
327
1125
58
900
304
964
1051
1051
1051
1051
1051
1051
1051
105 | 303
1002
61
351
119
393
426
144
1534
180
180
583
196
643
215
762
255
318
1017
338
1017
338
1017
338
1017
338
1017
338
1017
338
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
1017
348
349
349
349
349
349
349
349
349
349
349 | 285 964 314 62 340 311 114 381 127 412 137 517 517 554 186 624 206 738 433 27 70 310 103 340 113 433 340 115 952 2173 618 204 732 | 270 930 930 297 63 330 108 370 121 400 131 502 164 546 178 604 188 604 198 262 874 97 131 301 99 423 331 109 423 331 109 423 508 600 600 600 195 712 | 256
897
281
64
321
104
360
116
388
125
589
585
589
585
24
221
294
924
222
294
95
487
221
221
221
232
248
322
248
324
325
326
327
327
327
327
327
327
327
327
327
327 | | 28LH13 32LH06 32LH07 32LH08 32LH09 32LH10 32LH11 32LH12 32LH13 32LH14 32LH15 36LH07 36LH08 36LH09 36LH10 36LH11 36LH11 36LH11 | 30 14 16 17 21 21 24 27 30 33 35 16 18 21 21 23 25 30 | 28
32
32
32
32
32
32
32
32
32
32 | 1654 < 39 647 728 790 992 1096 1201 1409 1572 1618 1673 < 43 590 649 832 916 1000 1197 1407 | 5
39-46
25230
28380
30810
38670
42750
46830
54960
61320
65250
43-46
25350
27900
35760
39390
42990
51450
60510 | 47-49
25230
28380
30810
38670
42750
46830
54960
61320
63120
65250
47-56 57
25350
27900
35760
39390
42990
51450
60510 | 545
1342
569
509
507
507
507
507
7211
568
225
5774
450
1225
500
1225
500
1226
438
438
438
438
438
438
438
438
438
438 | 520
13111
543
543
549
549
549
5223
302
825
302
825
302
1201
480
1239
495
1279
59
424
485
1279
59
59
59
59
59
59
59
59
59
59
59
59
59 | 496 1281 518 52 472 27 189 529 211 189 529 315 574 229 720 343 1032 406 1177 461 1215 476 1255 60 453 176 639 492 248 697 269 843 637 269 981 376 1093 | 476 1252 495 53 456 495 511 200 768 297 768 297 325 996 444 1156 444 1192 458 1231 1473 61 399 168 627 61 399 61 61 61 61 61 61 61 61 61 61 61 61 61 |
454
1224
441
169
493
189
205
670
252
262
282
282
282
1113
364
1113
420
1207
454
460
160
160
67
67
67
67
67
67
67
67
67
67
67
67
67 | 436
1198
452
452
456
426
161
477
179
517
194
648
243
717
267
783
292
928
345
1072
397
1186
63
376
414
414
153
292
145
152
164
177
178
178
178
178
178
178
178
178
178 | 408
11773
433
56
412
159
462
170
499
184
627
757
227
1035
376
64
366
64
422
64
402
1107
395
1164
422
64
739
668
668
67
757
887
757
887
757
887
757
887
757
887
88 | 383
1149
415
57
399
447
162
240
667
240
667
240
1069
355
1144
407
65
355
350
140
498
497
497
601
128
887
77
606
65
867
867
867
867
867
867
867
867 | 361
1126
58
396
58
385
138
138
1432
154
468
167
586
645
228
964
336
1125
355
1125
379
134
484
1171
535
66
345
122
379
134
484
484
488
488
488
488
488
488
488
4 | 340 1083 373 59 373 131 418 146 453 159 568 198 624 217 687 239 811 281 931 319 997 337 1087 374 67 336 117 369 128 471 163 520 567 196 675 232 796 273 876 | 321 1041 1041 352 60 363 363 125 406 140 439 603 206 664 627 786 68 327 786 68 327 1051 112 358 123 358 123 358 123 37 7507 77 787 787 787 787 787 788 788 788 78 | 303
1002
61
351
119
393
133
426
643
196
643
216
762
255
871
288
69
318
445
492
492
492
492
492
492
492
493
496
496
497
497
498
498
498
498
498
498
498
498
498
498 | 285 964 114 381 127 172 564 186 624 243 843 275 903 340 113 433 340 115 157 618 624 240 802 | 270 930 297 63 330 108 370 121 400 131 502 164 546 604 178 816 262 816 271 301 301 301 301 301 301 301 301 301 30 | 256
897
281
64
321
104
360
116
487
529
169
249
221
779
249
95
322
104
412
292
294
412
133
454
485
159
694
412
72
72
72
73
74
75
75
75
75
75
75
75
75
75
75
75
75
75 | #### LRFD | | | | | | | | | | R) | | | | | | | | | | | | |-------------|---------------------|--------|---------------|---------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|---------------|------------|------------|------------|------------| | | | | Raso | | ANDAR
50 ksi N | | | | | | | | -, | | | nlf) | | | | | | Joist | Approx. Wt | Depth | Max | | LOAD* | Idamiii | 111 1101 | u Oti Cii | gui - L | ouus o | iiowii i | ii i ouii | u3 i ci | Lincai | 1 001 (| P 111) | | | | | | Designation | in Lbs. Per | in | Load | in l | | | | | | | | SPA | AN IN F | EET | | | | | | 47 | | | Linear Ft. | inches | (plf)
< 48 | Betv
48-59 | veen
60-65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 40LH08 | (Joists Only)
16 | 40 | 521 | 25020 | 25020 | 381 | 370 | 361 | 351 | 342 | 333 | 325 | 316 | 309 | 301 | 294 | 288 | 280 | 274 | 267 | | 4021100 | 10 | 40 | 021 | 20020 | 20020 | 150 | 144 | 138 | 132 | 127 | 122 | 117 | 112 | 108 | 104 | 100 | 97 | 93 | 90 | 86 | | 40LH09 | 21 | 40 | 685 | 32880 | 32880 | 498 | 484 | 472 | 459 | 447 | 436 | 424 | 414 | 403 | 394 | 384 | 375 | 366 | 358 | 349 | | 40LH10 | 21 | 40 | 754 | 36180 | 36180 | 196
550 | 188
535 | 180
520 | 173
507 | 166
493 | 160
481 | 153
469 | 147
457 | 141
445 | 136
435 | 131
424 | 126
414 | 122
403 | 118 | 113
382 | | 40LH10 | 21 | 40 | 754 | 30 100 | 36160 | 216 | 207 | 198 | 190 | 183 | 176 | 169 | 162 | 156 | 150 | 144 | 139 | 134 | 393
129 | 124 | | 40LH11 | 22 | 40 | 823 | 39510 | 39510 | 598 | 582 | 567 | 552 | 537 | 523 | 510 | 498 | 484 | 472 | 462 | 450 | 439 | 429 | 418 | | | | | | | | 234 | 224 | 215 | 207 | 198 | 190 | 183 | 176 | 169 | 163 | 157 | 151 | 145 | 140 | 135 | | 40LH12 | 25 | 40 | 1002 | 48090 | 48090 | 729 | 708 | 688 | 670 | 652 | 636 | 619 | 603 | 588 | 573 | 559 | 546 | 532 | 519 | 507 | | 40LH13 | 30 | 40 | 1181 | 56700 | 56700 | 285
859 | 273
835 | 261
813 | 251
792 | 771 | 231
750 | 730 | 712 | 205
694 | 197
676 | 189 | 182
643 | 176
628 | 169
613 | 163
598 | | TOLITIO | 00 | 40 | 1101 | 00700 | 00700 | 334 | 320 | 307 | 295 | 283 | 271 | 260 | 250 | 241 | 231 | 223 | 214 | 207 | 199 | 192 | | 40LH14 | 35 | 40 | 1351 | 64830 | 64830 | 984 | 957 | 930 | 904 | 880 | 856 | 834 | 813 | 792 | 772 | 753 | 735 | 717 | 699 | 682 | | 401.114.5 | 00 | 40 | 4544 | 70540 | 70540 | 383 | 367 | 351 | 336 | 323 | 309 | 297 | 285 | 273 | 263 | 252 | 243 | 233 | 225 | 216 | | 40LH15 | 36 | 40 | 1511 | 72510 | 72510 | 1101
427 | 1068
408 | 1036
390 | 1006
373 | 978
357 | 949
342 | 924
328 | 898
315 | 874
302 | 850
290 | 828
279 | 807
268 | 786
258 | 766 | 747
239 | | 40LH16 | 42 | 40 | 1665 | 79920 | 79920 | 1212 | 1194 | 1176 | 1158 | 1141 | 1126 | 1095 | 1065 | 1036 | 1009 | 982 | 957 | 933 | 909 | 886 | | | | | | | | 469 | 455 | 441 | 428 | 416 | 404 | 387 | 371 | 356 | 342 | 329 | 316 | 304 | 292 | 282 | | | | | < 53 | 53-59 | 60-73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | | 44LH09 | 19 | 44 | 569 | 30150 | 30150 | 408
158 | 397
152 | 388
146 | 379
141 | 370
136 | 363
131 | 354
127 | 346
122 | 339
118 | 331
114 | 324
110 | 316
106 | 310
103 | 303
99 | 297
96 | | 44LH10 | 21 | 44 | 628 | 33300 | 33300 | 450 | 439 | 429 | 418 | 408 | 399 | 390 | 381 | 373 | 364 | 357 | 349 | 342 | 334 | 327 | | | | | | | | 174 | 168 | 162 | 155 | 150 | 144 | 139 | 134 | 130 | 125 | 121 | 117 | 113 | 110 | 106 | | 44LH11 | 22 | 44 | 679 | 36000 | 36000 | 487 | 475 | 465 | 453 | 442 | 433 | 423 | 414 | 403 | 396 | 387 | 378 | 370 | 363 | 354 | | 44LH12 | 25 | 44 | 842 | 44610 | 44610 | 188
603 | 181
589 | 175
574 | 168
561 | 162
547 | 157
534 | 151
520 | 146
508 | 140
496 | 136
484 | 131
472 | 127
462 | 123
450 | 119
439 | 115
430 | | 7721112 | 25 | 77 | 042 | 44010 | 44010 | 232 | 224 | 215 | 207 | 200 | 192 | 185 | 179 | 172 | 166 | 160 | 155 | 149 | 144 | 139 | | 44LH13 | 30 | 44 | 998 | 52890 | 52890 | 715 | 699 | 681 | 666 | 649 | 634 | 619 | 606 | 592 | 579 | 565 | 553 | 541 | 529 | 519 | | 4411144 | 0.4 | 44 | 4440 | 00070 | 00070 | 275 | 265 | 254 | 246 | 236 | 228 | 220 | 212 | 205 | 198 | 191 | 185 | 179 | 173 | 167 | | 44LH14 | 31 | 44 | 1148 | 60870 | 60870 | 823
315 | 801
302 | 780
291 | 759
279 | 739
268 | 721
259 | 703
249 | 685
240 | 669
231 | 654
223 | 637
215 | 622
207 | 609
200 | 594
193 | 580
187 | | 44LH15 | 36 | 44 | 1336 | 70830 | 70830 | 958 | 934 | 912 | 889 | 868 | 847 | 826 | 805 | 786 | 768 | 750 | 732 | 714 | 699 | 682 | | | | | | | | 366 | 352 | 339 | 326 | 314 | 303 | 292 | 281 | 271 | 261 | 252 | 243 | 234 | 227 | 219 | | 44LH16 | 42 | 44 | 1541 | 81660 | 81660 | 1105 | 1078 | 1051 | 1026 | 1002 | 978 | 955 | 933 | 912 | 891 | 870 | 852 | 832 | 814 | 796 | | 44LH17 | 47 | 44 | 1655 | 87690 | 87690 | 421
1185 | 405
1170 | 390
1153 | 375
1138 | 362
1125 | 348
1098 | 336
1072 | 1048 | 313
1024 | 302
1000 | 291
978 | 282
957 | 272
936 | 263
915 | 255
895 | | 77L1117 | 47 | 77 | 1000 | 07030 | 07030 | 450 | 438 | 426 | 415 | 405 | 390 | 376 | 363 | 351 | 338 | 327 | 316 | 305 | 295 | 285 | | | | | < 57 | 57-59 | 60-81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | | 48LH10 | 21 | 48 | 528 | 30120 | 30120 | 369 | 361 | 354 | 346 | 339 | 331 | 325 | 318 | 312 | 306 | 300 | 294 | 288 | 282 | 277 | | 48LH11 | 22 | 48 | 573 | 32670 | 32670 | 399 | 136
390 | 132
382 | 127
373 | 123
366 | 119
358 | 116
351 | 112
343 | 108
337 | 105
330 | 102
324 | 99
318 | 96
312 | 93
306 | 300 | | TOLITT | | 70 | 0.0 | 320.0 | 320.0 | 152 | 147 | 142 | 137 | 133 | 129 | 125 | 120 | 117 | 113 | 110 | 106 | 103 | 100 | 97 | | 48LH12 | 25 | 48 | 724 | 41250 | 41250 | 504 | 493 | 483 | 472 | 462 | 451 | 442 | 433 | 424 | 415 | 408 | 399 | 391 | 384 | 376 | | 4011142 | 20 | 40 | 007 | 10110 | 40440 | 191 | 185 | 179 | 173 | 167 | 161 | 156 | 151 | 147 | 142 | 138 | 133 | 129 | 126 | 122 | | 48LH13 | 29 | 48 | 867 | 49410 | 49410 | 603 | 589
221 | 576
213 | 564
206 | 552
199 | 540
193 | 529
187 | 517
180 | 507
175 | 498
170 | 487
164 | 477
159 | 468
154 | 459
150 | 450
145 | | 48LH14 | 32 | 48 | 1023 | 58290 | 58290 | 712 | 696 | 681 | 666 | 651 | 637 | 624 | 610 | 598 | 585 | 574 | 562 | 550 | 540 | 529 | | | | | | | | 269 | 260 | 251 | 243 | 234 | 227 | 220 | 212 | 206 | 199 | 193 | 187 | 181 | 176 | 171 | | 48LH15 | 36 | 48 | 1176 | 67020 | 67020 | 817 | 799 | 781 | 765 | 748 | 732 | 717 | 702 | 687 | 672 | 658 | 645 | 633 | 619 | 607 | | 48LH16 | 42 | 48 | 1355 | 77250 | 77250 | 308
943 | 298
922 | 287
901 | 278
882 | 269
864 | 260
844 | 252
826 | 244
810 | 236
792 | 228
777 | 221
760 | 214
745 | 208
730 | 201
715 | 195
702 | | -FOLITIO | 74 | 70 | 1000 | 11230 | . 1230 | 355 | 343 | 331 | 320 | 310 | 299 | 289 | 280 | 271 | 263 | 255 | 247 | 239 | 232 | 225 | | 48LH17 | 47 | 48 | 1522 | 86760 | 86760 | 1059 | 1035 | 1012 | 990 | 969 | 948 | 928 | 909 | 889 | 871 | 853 | 837 | 820 | 804 | 787 | | | | | | | | 397 | 383 | 371 | 358 | 346 | 335 | 324 | 314 | 304 | 294 | 285 | 276 | 268 | 260 | 252
| # American National Standard SJI-LH/DLH-2010 # STANDARD ASD LOAD TABLE # **LONGSPAN STEEL JOISTS, LH-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 25, 1983 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD LH**-Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the DEAD load. In all cases the DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the uniform load for supplementary deflection criteria (i.e. a uniform load that will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated load exceed the TOTAL load-carrying capacity of the joist. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'–0". Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: ``` I_j = 26.767(W)(L^3)(10^{-6}), where W= RED figure in the Load Table, and L = (span – 0.33) in feet. ``` Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for a RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table – 0.33 feet)² and divide by (the actual span – 0.33 feet)². In no case shall the calculated load exceed the TOTAL load-carrying capacity of the joist. | | | | | STANDAI | BD I O | DTAB | | | CCDAN | etee: | IOIET | re I II | CEDIE | | | | | | | |-------------|---------------|--------|-------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | Base | d on a 50 ksi | | | | | | | | | | | plf) | | | | | | Joist | Approx. Wt | Depth | Max | SAFE LOAD* | | | | | | | | | | | . / | | | | | | Designation | in Lbs. Per | in | Load | in Lbs. | | | | | | | SPA | AN IN F | EET | | | | | | | | | Linear Ft. | inches | (plf) | Between | | | | | | | | | | | | | | | | | | (Joists only) | | < 22 | 22-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | | | | 18LH02 | 10 | 18 | 553 | 12160 | 468 | 442
284 | 418
259 | 391 | 367 | 345
193 | 324
175 | 306 | 289
147 | 273
135 | 259
124 | | | | | | 18LH03 | 11 | 18 | 613 | 13480 | 313
521 | 493 | 467 | 234
438 | 212
409 | 382 | 359 | 160
337 | 317 | 299 | 283 | | - | | | | IOLHUS | 11 | 10 | 013 | 13460 | 348 | 317 | 289 | 262 | 236 | 213 | 194 | 177 | 161 | 148 | 136 | | | | | | 18LH04 | 12 | 18 | 714 | 15700 | 604 | 571 | 535 | 500 | 469 | 440 | 413 | 388 | 365 | 344 | 325 | | | | | | | | | | | 403 | 367 | 329 | 296 | 266 | 242 | 219 | 200 | 182 | 167 | 153 | | | | | | 18LH05 | 15 | 18 | 806 | 17740 | 684 | 648 | 614 | 581 | 543 | 508 | 476 | 448 | 421 | 397 | 375 | | | | | | 4011100 | | 40 | | 2222 | 454 | 414 | 378 | 345 | 311 | 282 | 256 | 233 | 212 | 195 | 179 | | | | | | 18LH06 | 15 | 18 | 954 | 20980 | 809
526 | 749
469 | 696
419 | 648
377 | 605
340 | 566
307 | 531
280 | 499
254 | 470
232 | 443
212 | 418
195 | | | | | | 18LH07 | 17 | 18 | 990 | 21780 | 840 | 809 | 780 | 726 | 678 | 635 | 595 | 559 | 526 | 496 | 469 | | | | | | IOLI IO7 | 17 | 10 | 990 | 21700 | 553 | 513 | 476 | 428 | 386 | 349 | 317 | 288 | 264 | 241 | 222 | | | | | | 18LH08 | 19 | 18 | 1032 | 22700 | 876 | 843 | 812 | 784 | 758 | 717 | 680 | 641 | 604 | 571 | 540 | | | | | | | | | | | 577 | 534 | 496 | 462 | 427 | 387 | 351 | 320 | 292 | 267 | 246 | | | | | | 18LH09 | 21 | 18 | 1105 | 24320 | 936 | 901 | 868 | 838 | 810 | 783 | 759 | 713 | 671 | 633 | 598 | | | | | | | | | | | 616 | 571 | 527 | 491 | 458 | 418 | 380 | 346 | 316 | 289 | 266 | | · · | | | | | | | < 23 | 23-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 20LH02 | 10 | 20 | 498 | 11460 | 442 | 437 | 431 | 410 | 388 | 365 | 344 | 325 | 307 | 291 | 275 | 262 | 249 | 237 | 225 | | 0011100 | | -00 | 500 | 10100 | 306 | 303 | 298 | 274 | 250 | 228 | 208 | 190 | 174 | 160 | 147 | 136 | 126 | 117 | 108 | | 20LH03 | 11 | 20 | 529 | 12160 | 469
337 | 463
333 | 458
317 | 452
302 | 434
280 | 414
258 | 395
238 | 372
218 | 352
200 | 333
184 | 316
169 | 299
156 | 283
143 | 269
133 | 255
123 | | 20LH04 | 12 | 20 | 648 | 14900 | 574 | 566 | 558 | 528 | 496 | 467 | 440 | 416 | 393 | 372 | 353 | 335 4 | 318 | 303 | 289 | | 2011104 | 12 | 20 | 040 | 14300 | 428 | 406 | 386 | 352 | 320 | 291 | 265 | 243 | 223 | 205 | 189 | 174 | 161 | 149 | 139 | | 20LH05 | 14 | 20 | 697 | 16020 | 616 | 609 | 602 | 595 | 571 | 544 | 513 | 484 | 458 | 434 | 411 | 390 | 371 | 353 | 336 | | | | | | | 459 | 437 | 416 | 395 | 366 | 337 | 308 | 281 | 258 | 238 | 219 | 202 | 187 | 173 | 161 | | 20LH06 | 15 | 20 | 930 | 21380 | 822 | 791 | 763 | 723 | 679 | 635 | 596 | 560 | 527 | 497 | 469 | 444 | 421 | 399 | 379 | | | | | | | 606 | 561 | 521 | 477 | 427 | 386 | 351 | 320 | 292 | 267 | 246 | 226 | 209 | 192 | 178 | | 20LH07 | 17 | 20 | 991 | 22800 | 878 | 845 | 814 | 786 | 760 | 711 | 667 | 627 | 590 | 556 | 526 | 497 | 471 | 447 | 425 | | 0011100 | 40 | 00 | 1000 | 00500 | 647 | 599 | 556 | 518 | 484 | 438 | 398 | 362 | 331 | 303 | 278 | 256 | 236 | 218 | 202 | | 20LH08 | 19 | 20 | 1023 | 23520 | 908
669 | 873
619 | 842
575 | 813
536 | 785
500 | 760
468 | 722
428 | 687
395 | 654
365 | 621
336 | 588
309 | 558
285 | 530
262 | 503
242 | 479
225 | | 20LH09 | 21 | 20 | 1119 | 25740 | 990 | 953 | 918_ | 886 | 856 | 828 | 802 | 778 | 755 | 712 | 673 | 636 | 603 | 572 | 544 | | | | - | _ | | 729 | 675 | 626 | 581 | 542 | 507 | 475 | 437 | 399 | 366 | 336 | 309 | 285 | 264 | 244 | | 20LH10 | 23 | 20 | 1207 | 27760 | 1068 | 1028 | 991 | 956 | 924 | 894 | 865 | 839 | 814 | 791 | 748 | 707 | 670 | 636 | 604 | | | | | | | 786 | 724 | 673 | 626 | 585 | 545 | 510 | 479 | 448 | 411 | 377 | 346 | 320 | 296 | 274 | | | STANDARD LOAD TABLE FOR LONGSPAN STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf) Joist Approx. Wt Depth Max SAFELOAD* Designation in Lbs. Per in Load in Lbs. SPAN IN FEET |----------------|--|--------|--------------------|--------------------|------------------|-----------------------|------------------|------------------|------------------|--------------------------|--------------------|---------------|-------------------|------------------|------------------|--------------------------|------------------|---------------|------------------|------------------| | | | Depth | Max | | AFELOAD* | ield S | trengt | h - Lo | ads S | hown | In Po | | | | oot (p | olf) | | | | | | 2 co.g.ia.io.i | Linear Ft. (Joists only) | inches | (plf)
< 29 | | Between
29-33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | | 24LH03 | 11 | 24 | 401 | | 11620 | 342 | 339 | 336 | 323 | 307 | 293 | 279 | 267 | 255 | 244 | 234 | 224 | 215 | 207 | 199 | | 24LH04 | 12 | 24 | 491 | | 14240 | 235
419 | 226
398 | 218
379 | 204
360 | 1 <mark>88</mark>
343 | 175
327 | 162
312 | 152
298 | 141
285 | 132
273 | 124
262 | 116
251 | 109
241 | 102
231 | 96
222 | | 24LH05 | 13 | 24 | 526 | | 15260 | 288
449 | 265
446 | 246
440 | 227
419 | 210
399 | 195
380 | 182
363 | 169
347 | 1 <u>58</u> | 148
317 | 138
304 | 130
291 | 122
280 | 114
269 | 107
258 | | 24LH06 | 16 | 24 | 708 | | 20520 | 308
604 | 297
579 | 285
555 | 264
530 | 244
504 | 226
480 | 210
457 | 1
<mark>96</mark> | 182
417 | 171
399 | 1 <mark>60</mark>
381 | 150
364 | 141
348 | 132
334 | 124
320 | | | | | | | | 411 | 382 | 356 | 331 | 306 | 284 | 263 | 245 | 228 | 211 | 197 | 184 | 172 | 161 | 152 | | 24LH07 | 17 | 24 | 777 | | 22540 | 665
452 | 638
421 | 613
393 | 588
367 | 565
343 | 541
320 | 516
297 | 491
276 | 468
257 | 446
239 | 426
223 | 407
208 | 389
195 | 373
182 | 357
171 | | 24LH08 | 18 | 24 | 829 | | 24040 | 707
480 | 677
447 | 649
416 | 622
388 | 597
362 | 572
338 | 545
314 | 520
292 | 497
272 | 475
254 | 455
238 | 435
222 | 417
208 | 400
196 | 384
184 | | 24LH09 | 21 | 24 | 976 | | 28300 | 832
562 | 808
530 | 785
501 | 764
460 | 731
424 | 696
393 | 663
363 | 632
337 | 602
313 | 574
292 | 548
272 | 524
254 | 501
238 | 480
223 | 460
209 | | 24LH10 | 23 | 24 | 1031 | | 29900 | 882
596 | 856 | 832
528 | 809
500 | 788
474 | 768
439 | 737
406 | 702
378 | 668
351 | 637
326 | 608
304 | 582
285 | 556
266 | 533
249 | 511
234 | | 24LH11 | 25 | 24 | 1087 | | 31520 | 927 | 559
900 | 875 | 851 | 829 | 807 | 787 | 768 | 734 | 701 | 671 | 642 | 616 | 590 | 567 | | | | | < 34 | | 34-41 | 624
42 | 588
43 | 555
44 | 525
45 | 498
46 | 472
47 | 449
48 | 418
49 | 388
50 | 361
51 | 337
52 | 315
53 | 294
54 | 276
55 | 259
56 | | 28LH05 | 13 | 28 | 415 | | 14120 | 337
219 | 323
205 | 310
192 | 297
180 | 286
169 | 275
159 | 265
150 | 255
142 | 245
133 | 237 | 228
119 | 220
113 | 213
107 | 206 | 199
97 | | 28LH06 | 16 | 28 | 552 | | 18760 | 448
289 | 429
270 | 412
253 | 395
238 | 379
223 | 364 | 350
197 | 337
186 | 324
175 | 313
166 | 301
156 | 291
148 | 281
140 | 271
133 | 262
126 | | 28LH07 | 17 | 28 | 623 | | 21180 | 505 | 484 | 464 | 445 | 427 | 410 | 394 | 379 | 365 | 352 | 339 | 327 | 316 | 305 | 295 | | 28LH08 | 18 | 28 | 667 | | 22680 | 326
540 | 305
517 | 285
496 | 267
475 | 251
456 | 236
438 | 420 | 209
403 | 197
387 | 186
371 | 176
357 | 166
344 | 158
331 | 150
319 | 308 | | 28LH09 | 21 | 28 | 821 | | 27920 | 348
667 | 325
639 | 305
612 | 285
586 | 268
563 | 252
540 | 236
519 | 499 | 209
481 | 196
463 | 185
446 | 175
430 | 165
415 | 156
401 | 148
387 | | 28LH10 | 23 | 28 | 898 | | 30540 | 428
729 | 400
704 | 375
679 | 351
651 | 329
625 | 309
600 | 291
576 | 274
554 | 258
533 | 243
513 | 228
495 | 216
477 | 204
460 | 193
444 | 183
429 | | 28LH11 | 25 | 28 | 964 | | 32760 | 466
780 | 439
762 | 414
736 | 388
711 | 364
682 | 342
655 | 322
629 | 303
605 | 285
582 | 269 561 | 255
540 | 241
521 | 228
502 | 215
485 | 204
468 | | | 27 | 28 | | | 35980 | 498
857 | 475
837 | 448
818 | 423
800 | 397
782 | 373
766 | 351
737 | 331
709 | 312
682 | 294
656 | 278
632 | 263
609 | 249
587 | 236
566 | 223 | | 28LH12 | | | 1058 | | | 545 | 520 | 496 | 476 | 454 | 435 | 408 | 383 | 361 | 340 | 321 | 303 | 285 | 270 | 546
256 | | 28LH13 | 30 | 28 | 1103 | | 37500 | 895
5 69 | 874
543 | 854
518 | 835
495 | 816
472 | 799
452 | 782
433 | 766
415 | 751
396 | 722
373 | 694
352 | 668
332 | 643
314 | 620
297 | 598
281 | | 32LH06 | 14 | 32 | < 39
431 | 39-46 16820 | 47-49
16820 | 50 | 51 326 | 52 315 | 53 | 54 294 | 55 284 | 56 275 | 57 266 | 58 257 | 59 249 | 60 242 | 61 234 | 62 227 | 63 220 | 64 214 | | 32LH07 | 16 | 32 | 485 | 18920 | 18920 | 211
379 | 199
366 | 189
353 | 179
341 | 169
329 | 161
318 | 153
308 | 145
298 | 138
288 | 131
279 | 125
271 | 119
262 | 114
254 | 108
247 | 104
240 | | 32LH08 | 17 | 32 | 527 | 20540 | 20540 | 235
411 | 223
397 | 211
383 | 200
369 | 189
357 | 179
345 | 170
333 | 1 <mark>62</mark> | 154
312 | 146
302 | 140
293 | 133
284 | 127
275 | 121
267 | 116
259 | | | | | 661 | | 25780 | 255 | 242 | 229 | 216 | 205
447 | 194 | 184 | 175
404 | 167
391 | 159
379 | 151
367 | 144
356 | 137
345 | 131
335 | 125 | | 32LH09 | 21 | 32 | | 25780 | | 516
319 | 498
302 | 480
285 | 463
270 | 256 | 432
243 | 418
230 | 219 | 208 | 198 | 189 | 180 | 172 | 164 | 325
157 | | 32LH10 | 21 | 32 | 731 | 28500 | 28500 | 571
352 | 550
332 | 531
315 | 512
297 | 495
282 | 478
267 | 462
254 | 445
240 | 430
228 | 416
217 | 402
206 | 389
196 | 376
186 | 364
178 | 353
169 | | 32LH11 | 24 | 32 | 801 | 31220 | 31220 | 625
385 | 602
363 | 580
343 | 560
325 | 541
308 | 522
292 | 505
277 | 488
263 | 473
251 | 458
239 | 443
227 | 429
216 | 416
206 | 403
196 | 390
187 | | 32LH12 | 27 | 32 | 939 | 36640 | 36640 | 734
450 | 712
428 | 688
406 | 664
384 | 641
364 | 619
345 | 598
327 | 578
311 | 559
295 | 541
281 | 524
267 | 508
255 | 492
243 | 477
232 | 463
221 | | 32LH13 | 30 | 32 | 1048 | 40880 | 40880 | 817
50 0 | 801
480 | 785
461 | 771
444 | 742
420 | 715
397 | 690
376 | 666
354 | 643
336 | 621
319 | 600
304 | 581
288 | 562
275 | 544
262 | 527
249 | | 32LH14 | 33 | 32 | 1079 | 42080 | 42080 | 843 | 826 | 810 | 795 | 780 | 766 | 738 | 713 | 688 | 665 | 643 | 622 | 602 | 583 | 564 | | 32LH15 | 35 | 32 | 1115 | 43500 | 43500 | 515
870 | 495
853 | 476
837 | 458
821 | 805 | 417
791 | 395
776 | 763 | 355
750 | 337
725 | 321
701 | 304
678 | 290
656 | 276
635 | 264
616 | | | | | < 43 | 43-46 | 47-56 57 | 532
58 | 511
59 | 492
60 | 473
61 | 454
62 | 438
63 | 422
64 | 407
65 | 393
66 | 374
67 | 355
68 | 338
69 | 322
70 | 306
71 | 292
72 | | 36LH07 | 16 | 36 | 393 | 16900 | 16900 | 292 | 283
168 | 274 | 266
153 | 258
146 | 251
140 | 244
134 | 237
128 | 230
122 | 224 | 218
112 | 212 | 207 | 201
99 | 196 | | 36LH08 | 18 | 36 | 433 | 18600 | 18600 | 321 | 311 | 302 | 293 | 284 | 276 | 268 | 260 | 253 | 117
246 | 239 | 233 | 103
227 | 221 | 95
215 | | 36LH09 | 21 | 36 | 554 | 23840 | 23840 | 194
411 | 185
398 | 176
386 | 168
374 | 160
363 | 1 <u>53</u>
352 | 146
342 | 333 | 134
323 | 128
314 | 123
306 | 118
297 | 113
289 | 109
282 | 104
275 | | 36LH10 | 21 | 36 | 611 | 26260 | 26260 | 247
454 | 235
440 | 224
426 | 214
413 | 204
401 | 195
389 | 186
378 | 179
367 | 171
357 | 163
347 | 157
338 | 150
328 | 144
320 | 138
311 | 133
303 | | | | 36 | 667 | 28660 | 28660 | 273 | 260 | 248
465 | 236
451 | 225 | 215 | 206 | 197 | 188 | 180 | 173 | 165
358 | 159
348 | 152
339 | 146
330 | | 36LH11 | 23 | | | | | 495
297 | 480
283 | 269 | 257 | 438
246 | 425
234 | 412
224 | 401
214 | 389
205 | 378
196 | 368
188 | 180 | 173 | 166 | 159 | | 36LH12 | 25 | 36 | 798 | 34300 | 34300 | 593
354 | 575
338 | 557
322 | 540
307 | 523
292 | 508
279 | 493
267 | 478
255 | 464
243 | 450
232 | 437
222 | 424
213 | 412
204 | 400
195 | 389
187 | | 36LH13 | 30 | 36 | 938 | 40340 | 40340 | 697
415 | 675
395 | 654
376 | 634
359 | 615
342 | 596
327 | 579
312 | 562
298 | 546
285 | 531
273 | 516
262 | 502
251 | 488
240 | 475
231 | 463
222 | | 36LH14 | 36 | 36 | 1034 | 44460 | 44460 | 768 | 755 | 729 | 706 | 683 | 661 | 641 | 621 | 602 | 584 | 567 | 551 | 535 | 520 | 505 | | 36LH15 | 36 | 36 | 1090 | 46880 | 46880 | 456
809 | 434
795 | 781 | 392
769 | 373
744 | 356
721 | 339
698 | 323
677 | 309
656 | 295
637 | 283
618 | 270 600 | 259
583 | 247
567 | 237
551 | | | | | | | | 480 | 464 | 448 | 434 | 413 | 394 | 375 | 358 | 342 | 327 | 312 | 299 | 286 | 274 | 263 | | | | | S | STANDA | ARD LO | AD TA | ABLE F | OR LO | ONGSI | PAN S | TEEL . | JOIST | S, LH- | SERIE | S | | | | | |
--|---------------|--------|-------|--------|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|------------|-------------|-------------------|------------|------------| | | | Bas | | | | | | | | | | | | | | (plf) | | | | | | STANDARD LOAD TABLE FOR LONGSPAN STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf) Joist Designation in Lbs. Per in I | • | Linear Ft. | inches | (plf) | | veen | | | | | | | | | | | | | | | | | 401.1100 | (Joists Only) | - 10 | < 48 | 48-59 | 60-65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 40LH08 | 16 | 40 | 348 | 16680 | 16680 | 254
150 | 247
144 | 241
138 | 234
132 | 228
127 | 222
122 | 217
117 | 211
112 | 206
108 | 201
104 | 196
100 | 192
97 | 187 | 183 | 178
86 | | 40LH09 | 21 | 40 | 457 | 21920 | 21920 | 332
196 | 323
188 | 315
180 | 306
173 | 298
166 | 291
160 | 283
153 | 276
147 | 269
141 | 263
136 | 256
131 | 250
126 | 244 | 239 | 233 | | 40LH10 | 21 | 40 | 503 | 24120 | 24120 | 367
216 | 357
207 | 347
198 | 338
190 | 329
183 | 321
176 | 313
169 | 305
162 | 297
156 | 290
150 | 283 | 276
139 | 269
134 | 262
129 | 255 | | 40LH11 | 22 | 40 | 549 | 26340 | 26340 | 399
234 | 388
224 | 378
215 | 368
207 | 358
198 | 349
190 | 340
183 | 332
176 | 323
169 | 315
163 | 308 | 300
151 | 293
145 | 286
140 | 279 | | 40LH12 | 25 | 40 | 668 | 32060 | 32060 | 486
285 | 472
273 | 459
261 | 447
251 | 435
241 | 424
231 | 413 | 402
213 | 392
205 | 382
197 | 373
189 | 364
182 | 355
176 | 346
169 | 338
163 | | 40LH13 | 30 | 40 | 788 | 37800 | 37800 | 573 | 557 | 542 | 528 | 514 | 500 | 487 | 475 | 463 | 451 | 440 | 429 | 419 | 409 | 399 | | 40LH14 | 35 | 40 | 900 | 43220 | 43220 | 656 | 638 | 307
620 | 603 | 283
587 | 571 | 556 | 250
542 | 528 | 515 | 502 | 490 | 478 | 199
466 | 455 | | 40LH15 | 36 | 40 | 1007 | 48340 | 48340 | 383
734 | 712 | 351
691 | 671 | 323
652 | 633 | 616 | 285
599 | 273 583 | 263
567 | 552
552 | 538 | 524 | 511
511 | 498 | | 40LH16 | 42 | 40 | 1110 | 53280 | 53280 | 808 | 408
796 | 390
784 | 373
772 | 357
761 | 342
751 | 328
730 | 710 | 302
691 | 290
673 | 279
655 | 268
638 | 258
622 | 606 | 591 | | | | | < 53 | 53-59 | 60-73 | 469
74 | 455
75 | 441
76 | 428
77 | 416
-78 | 404
79 | 387 | 371
81 | 356
82 | 342 | 329
84 | 316
- 85 | 304
86 | 292
87 | 282
88 | | 44LH09 | 19 | 44 | 379 | 20100 | 20100 | 272 | 265 | 259 | 253 | 247 | 242 | 236 | 231 | 226 | 221 | 216 | 211 | 207 | 202 | 198 | | | | | 0.0 | 20.00 | | 158 | 152 | 146 | 141 | 136 | 131 | 127 | 122 | 118 | 114 | 110 | 106 | 103 | 99 | 96 | | 44LH10 | 21 | 44 | 419 | 22200 | 22200 | 300
174 | 293
168 | 286
162 | 279
155 | 272
150 | 266
144 | 260
139 | 254
134 | 249
130 | 243
125 | 238
121 | 233
117 | 228
113 | 223
110 | 218
106 | | 44LH11 | 22 | 44 | 453 | 24000 | 24000 | 325
188 | 317
181 | 310
175 | 302
168 | 295
162 | 289
157 | 282
151 | 276
146 | 269
140 | 264
136 | 258
131 | 252
127 | 247
123 | 242
119 | 236
115 | | 44LH12 | 25 | 44 | 561 | 29740 | 29740 | 402
232 | 393
224 | 383
215 | 374
207 | 365
200 | 356
192 | 347
185 | 339
179 | 331
172 | 323
166 | 315
160 | 308
155 | 300
149 | 293
144 | 287
139 | | 44LH13 | 30 | 44 | 665 | 35260 | 35260 | 477
275 | 466
265 | 454
254 | 444
246 | 433
236 | 423
228 | 413
220 | 404
212 | 395 | 386
198 | 377
191 | 369
185 | 361
179 | 353
173 | 346
167 | | 44LH14 | 31 | 44 | 766 | 40580 | 40580 | 549
315 | 534 | 520
291 | 506
279 | 493
268 | 481 | 469
249 | 457 | 446
231 | 436
223 | 425
215 | 415
207 | 406
200 | 396
193 | 387
187 | | 44LH15 | 36 | 44 | 891 | 47220 | 47220 | 639 | 623
352 | 608 | 593
326 | 579
314 | 565
303 | 551 | 537
281 | 524
271 | 512
261 | 500
252 | 488
243 | 476
234 | 466
227 | 455
219 | | 44LH16 | 42 | 44 | 1027 | 54440 | 54440 | 737 | 719
405 | 701
390 | 684
375 | 668 | 652
348 | 637 | 622
324 | 608 | 594
302 | 580
291 | 568
282 | 555
272 | 543
263 | 531
255 | | 44LH17 | 47 | 44 | 1103 | 58460 | 58460 | 790
450 | 780
438 | 769
426 | 759
415 | 750
405 | 732
390 | 715
376 | 699
363 | 683
351 | 667
338 | 652
327 | 638
316 | 624
305 | 610
295 | 597
285 | | | | | < 57 | 57-59 | 60-81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | | 48LH10 | 21 | 48 | 352 | 20080 | 20080 | 246
141 | 241
136 | 236
132 | 231
127 | 226
123 | 221
119 | 217
116 | 212
112 | 208
108 | 204
105 | 200
102 | 196
99 | 192
96 | 188
93 | 185
90 | | 48LH11 | 22 | 48 | 382 | 21780 | 21780 | 266
152 | 260
147 | 255
142 | 249 | 244 | 239
129 | 234
125 | 229
120 | 225
117 | 220
113 | 216
110 | 212
106 | 208 | 204
100 | 200
97 | | 48LH12 | 25 | 48 | 482 | 27500 | 27500 | 336
191 | 329
185 | 322
179 | 315
173 | 308
167 | 301
161 | 295
156 | 289
151 | 283
147 | 277
142 | 272
138 | 266
133 | 261
129 | 256
126 | 251
122 | | 48LH13 | 29 | 48 | 578 | 32940 | 32940 | 402 | 393 | 384
213 | 376
206 | 368
199 | 360
193 | 353
187 | 345
180 | 338
175 | 332
170 | 325
164 | 318
159 | 312
154 | 306
150 | 300
145 | | 48LH14 | 32 | 48 | 682 | 38860 | 38860 | 475
269 | 464 | 454
251 | 444
243 | 434
234 | 425
227 | 416
220 | 407
212 | 399
206 | 390
199 | 383
193 | 375
187 | 367
181 | 360
176 | 353
171 | | 48LH15 | 36 | 48 | 784 | 44680 | 44680 | 545 | 533
298 | 521
287 | 510 | 499
269 | 488 | 478
252 | 468
244 | 458
236 | 448
228 | 439 | 430
214 | 422 | 413
201 | 405
195 | | 48LH16 | 42 | 48 | 904 | 51500 | 51500 | 629
355 | 615
343 | 601
331 | 588
320 | 576
310 | 563
299 | 551
289 | 540
280 | 528
271 | 518
263 | 507
255 | 497
247 | 208
487
239 | 477
232 | 468
225 | | 48LH17 | 47 | 48 | 1015 | 57840 | 57840 | 706
397 | 690
383 | 675
371 | 660
358 | 646
346 | 632
335 | 619
324 | 606
314 | 593
304 | 581
294 | 569
285 | 558
276 | 547
268 | 536
260 | 525
252 | # American National Standard SJI-LH/DLH-2010 # STANDARD LRFD LOAD TABLE # **DEEP LONGSPAN STEEL JOISTS, DLH-SERIES** Based on a 50 ksi Maximum Yield Strength Spans up to and including 144 ft. adopted by the Steel Joist Institute May 1, 2000 Spans greater than 144 ft. up to and including 240 ft. adopted by the Steel Joist Institute May 18, 2010 Revised to May 18, 2010 – Effective December, 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD DLH**-Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the unfactored DEAD load. In all cases the factored DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the factored LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the unfactored, uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain
the unfactored, uniform load for supplementary deflection criteria (i.e. the unfactored uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as given in the Standard ASD Load Table for Deep Longspan Steel Joists, DLH-Series. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **BLUE SHADED** area of the Load **Table**, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". Where the joist span is in the GRAY **SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until all rows of bridging are completely installed. The GRAY **SHADED** area starts after 100'–0" and extends up through 240'–0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: $I_j = 26.767(W)(L^3)(10^6)$, where W= RED figure in the Load Table, and L = (span - 0.33) in feet. Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe factored uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe factored uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for an unfactored **RED** figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the unfactored **RED** figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table - 0.33 feet)² and divide by (the actual span - 0.33 feet)². In no case shall the calculated unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as determined from the Standard **ASD** Load Table for Deep Longspan Steel Joists, **DLH**-Series. | | | | | | | | | | 9 ; | | | | | | | | | | | | |-------------|--------------------------|--------------|-------------|----------------|------------------|-------------|-------------------|-------------------|--------------------|------------------|-------------------|----------------|------------|------------------|-------------------|--------------------------|----------------|-------------------|-------------------|--------------------------| | | | | | Bas | | | | | LONGS
trength - | | | | | | t (plf) | | | | | | | Joist | Approx. Wt | Depth | Max | | LOAD* | | | | | | | | | | · (F) | | | | | | | Designation | in Lbs. Per
Linear Ft | in
inches | Load
plf | in L
Betv | _bs.
ween | | | | | | | SP | AN IN F | EET | | | | | | | | 52DLH10 | (Joists only)
25 | 52 | < 62 | | -89
200 | 90
447 | 91
436 | 92
427 | 93 | 94
409 | 95
400 | 96 391 | 97
384 | 98
376 | 99
369 | 100
361 | 101
354 | 102
346 | 103
340 | 104
334 | | | | | | | | 171 | 165 | 159 | 154 | 150 | 145 | 140 | 136 | 132 | 128 | 124 | 120 | 116 | 114 | 110 | | 52DLH11 | 26 | 52 | 712 | | 130 | 490
187 | 480
181 | 469
174 | 459
169 | 448
164 | 439
158 | 430
153 | 421
149 | 412
144 | 405
140 | 396
135 | 388
132 | 381
128 | 373
124 | 366
120 | | 52DLH12 | 29 | 52 | 794 | 492 | 230 | 547
204 | 535
197 | 523
191 | 513
185 | 501
179 | 490
173 | 480
168 | 471
163 | 460
158 | 451
153 | 442
149 | 433
144 | 426
140 | 417
135 | 409
132 | | 52DLH13 | 34 | 52 | 964 | 591 | 760 | 664
247 | 649
239 | 636
231 | 621
224 | 609
216 | 595
209 | 583
203 | 571
197 | 559
191 | 549
185 | 537
180 | 526
174 | 516
170 | 507
164 | 496
159 | | 52DLH14 | 39 | 52 | 1103 | 683 | 370 | 760
276 | 745
266 | 729
258 | 714
249 | 699
242 | 685
234 | 670
227 | 657
220 | 645
213 | 631
207 | 619
201 | 607
194 | 595
189 | 585
184 | 573
178 | | 52DLH15 | 42 | 52 | 1239 | 76 | 800 | 853 | 835 | 817 | 799 | 783 | 766 | 750 | 735 | 720 | 705 | 691 | 676 | 664 | 651 | 639 | | 52DLH16 | 45 | 52 | 1335 | 82 | 800 | 311
921 | 301
901 | 291
882 | 282
862 | 272
844 | 264
826 | 256
810 | 792 | 240
777 | 233
760 | 226
745 | 730 | 717 | 702 | 201
688 | | 52DLH17 | 52 | 52 | 1537 | 95 | 310 | 346
1059 | 335
1036 | 324
1014 | 314
991 | 304
970 | 294
951 | 285
930 | 276
912 | 267
892 | 260
874 | 252
858 | 840 | 823
823 | 230
808 | 792 | | | | | <67 | 67 | -97 | 395
98 | 381
99 | 369
100 | 357
101 | 346
102 | 335
103 | 324
104 | 315
105 | 304
106 | 296
107 | 286
108 | 279
109 | 270
110 | 263
111 | 255
112 | | 56DLH11 | 26 | 56 | 631 | 423 | 300 | 432
169 | 424
163 | 415
158 | 408
153 | 400
149 | 393
145 | 385
140 | 379
136 | 372
133 | 366 | 358
125 | 352
122 | 346
118 | 340
115 | 334
113 | | 56DLH12 | 30 | 56 | 725 | 48 | 600 | 496
184 | 486
178 | 477 | 468
168 | 459
163 | 450
158 | 442
153 | 433
150 | 426
145 | 417
141 | 409
137 | 402
133 | 394
130 | 388 | 381
123 | | 56DLH13 | 34 | 56 | 879 | 588 | 860 | 601 | 591 | 173
579 | 568 | 558 | 547 | 537 | 526 | 516
175 | 507 | 496 | 487 | 478 | 471
152 | 462 | | 56DLH14 | 39 | 56 | 993 | 66 | 540 | 679 | 666 | 652 | 640 | 628 | 191
616 | 186
604 | 181
594 | 582 | 171
571 | 166
562 | 552
101 | 157
541 | 532
474 | 149
523 | | 56DLH15 | 42 | 56 | 1135 | 76 | 020 | 777 | 762 | 747 | 732 | 717 | 703 | 690 | 676 | 196
664 | 190
651 | 1 <u>86</u>
639 | 181
628 | 175
616 | 604 | 167
594 | | 56DLH16 | 46 | 56 | 1224 | 820 | 020 | 281
838 | 272
822 | 264
805 | 256
789 | 248
774 | 759 | 234
744 | 730 | 717 | 703 | 690 | 204
678 | 198
666 | 192
654 | 188
642 | | 56DLH17 | 51 | 56 | 1411 | 94 | 530 | 313
964 | 304
945 | 927 | 285
907 | 277
891 | 269
873 | 262
856 | 254
840 | 823 | 808 | 793 | 780 | 765 | 751 | 738 | | | | | < 71 | 71-99 | 100-105 | 356
106 | 345
107 | 335
108 | 325
109 | 316
110 | 306
111 | 298
112 | 289
113 | 281 `
114 | 273
115 | 266
116 | 258
117 | 251
118 | 245
119 | 238
120 | | 60DLH12 | 29 | 60 | 659 | 46800 | 46800 | 442
168 | 433
163 | 426
158 | 418
154 | 411
150 | 405
146 | 397
142 | 391
138 | 384
134 | 378
131 | 372
128 | 366
124 | 360
121 | 354
118 | 348
115 | | 60DLH13 | 35 | 60 | 801 | 56880 | 56880 | 537
203 | 526
197 | 517
191 | 508
187 | 499
181 | 490
176 | 483
171 | 474
167 | 466
163 | 459
158 | 451
154 | 444
151 | 436
147 | 429
143 | 423
139 | | 60DLH14 | 40 | 60 | 890 | 63210 | 63210 | 597
216 | 586
210 | 574
205 | 564
199 | 555
193 | 544
189 | 534
183 | 525
178 | 516
173 | 507
170 | 498
165 | 490
161 | 481
156 | 474
152 | 465
149 | | 60DLH15 | 43 | 60 | 1045 | 74190 | 74190 | 700
255 | 687
248 | 675 | 663 | 651
228 | 640
223 | 628
216 | 618
210 | 607
205 | 597 | 588
194 | 577
190 | 568
185 | 559
180 | 550
175 | | 60DLH16 | 46 | 60 | 1149 | 81570 | 81570 | 769
285 | 756
277 | 741
269 | 727
262 | 714
255 | 702
247 | 690
241 | 676
235 | 666 | 654
223 | 642
217 | 631
211 | 621
206 | 610
201 | 600
196 | | 60DLH17 | 52 | 60 | 1320 | 93750 | 93750 | 885
324 | 868
315 | 853
306 | 837
298 | 822
290 | 807 | 793
275 | 778 | 765
261 | 751
254 | 739
247 | 726
241 | 714
235 | 702
228 | 690
223 | | 60DLH18 | 59 | 60 | 1524 | 108180 | 108180 | 1021 | 1002
357 | 984
346 | 966
337 | 948
327 | 931 | 915
310 | 898 | 883
294 | 867
286 | 852
279 | 838
272 | 823
266 | 810
259 | 796
252 | | 04511140 | 04 | 0.4 | <76 | 76-99 | 100-113 | 114
396 | 115
388 | 116
382 | 117
376 | 118
370 | 119 | 120
358 | 121
352 | 122
346 | 123
342 | 124
336 | 125
331 | 126
327 | 127 | 128
316 | | 64DLH12 | 31 | 64 | 594 | 45120 | 45120 | 153 | 150 | 146 | 142 | 138
450 | 135
442 | 132 | 129
429 | 125 | 122 | 119 | 116
403 | 114 | 111 | 109 | | 64DLH13 | 34 | 64 | 720 | 54750 | 54750 | 481
186 | 472
181
540 | 465
176 | 457
171 | 168
514 | 163 | 436
159 | 155
489 | 421
152 | 415
148
474 | 409
144 | 141 | 396
137 | 390
134 | 385
131 | | 64DLH14 | 40 | 64 | 825 | 62730 | 62730 | 550
199 | 193 | 531
189 | 523
184 | 179 | 505
174 | 498
171 | 166 | 481
162 | 158 | 466
154 | 459
151 | 451
147 | 444
143 | 438
140 | | 64DLH15 | 43 | 64 | 946 | 71910 | 71910 | 631
234 | 621
228 | 610
223 | 600
217 | 591
211 | 580
206 | 571
201 | 562
196 | 553
191 | 544
187 | 537
182 | 528
177 | 520
173 | 511
170 | 504
165 | | 64DLH16 | 46 | 64 | 1065 | 80940 | 80940 | 711
262 | 699
254 | 687
248 |
675
242 | 664
235 | 652
229 | 642
224 | 631
218 | 621
213 | 610
208 | 601
203 | 591
198 | 582
193 | 573
189 | 564
184 | | 64DLH17 | 52 | 64 | 1227 | 93270 | 93270 | 819
298 | 804
290 | 790
283 | 777
275 | 763
268 | 751
262 | 738
255 | 726
248 | 714
243 | 702
237 | 691
231 | 681
226 | 669
220 | 658
215 | 648
210 | | 64DLH18 | 59 | 64 | 1417 | 107700 | 107700 | 945
337 | 928
328 | 912
320 | 897
311 | 880
304 | 867
296 | 852
288 | 838
282 | 823
274 | 810
267 | 798
261 | 784
255 | 772
249 | 760
243 | 748
237 | | 68DLH13 | 37 | 68 | < 81
650 | 81-99
52650 | 100-121
52650 | 122 | 123 426 | 124
418 | 125 | 126 406 | 127 | 128 394 | 129
388 | 130
382 | 131
378 | 1 32 | 133
366 | 134
361 | 135
355 | 136 351 | | 68DLH14 | 40 | 68 | 749 | 60630 | 60630 | 171
498 | 168
490 | 164
483 | 159
475 | 155
468 | 152
462 | 149
454 | 145
448 | 142
441 | 138
435 | 135
429 | 133
421 | 130
415 | 127
409 | 124
403 | | 68DLH15 | 44 | 68 | 839 | 67980 | 67980 | 184
558 | 179
547 | 175
540 | 171
531 | 167
522 | 163
514 | 159
505 | 155
498 | 152
490 | 148
483 | 145
475 | 141
468 | 138
462 | 135
454 | 1 <mark>33</mark>
448 | | 68DLH16 | 49 | 68 | 995 | 80610 | 80610 | 206
661 | 201
649 | 196
640 | 191
630 | 187
619 | 182
610 | 178
600 | 174
591 | 170
582 | 166
573 | 1 <mark>62</mark>
564 | 158
556 | 155
547 | 152
540 | 148
531 | | 68DLH17 | | | | | | 242
745 | 236
733 | 230
721 | 225
711 | 219
700 | 214
690 | 209
679 | 204
669 | 199
658 | 195
649 | 190
640 | 186
630 | 182
621 | 178
612 | 174
604 | | | 55 | 68 | 1121 | 90840 | 90840 | 275
862 | 268
849 | 262
835 | 256
823 | 249
810 | 244
798 | 238
786 | 232
774 | 228
762 | 222
751 | 217
739 | 212
729 | 208
718 | 203
708 | 198
697 | | 68DLH18 | 61 | 68 | 1298 | 105150 | 105150 | 311 | 304 | 297 | 289 | 283 | 276 | 269 | 263
888 | 257 | 251 | 246 | 240 | 718
234
822 | 230 | 225 | | 68DLH19 | 67 | 68 | 1495 | 121080 | 121080 | 993
353 | 976
344 | 961
336 | 946
328 | 931
320 | 916
313 | 901
305 | 298 | 874
291 | 861
285 | 278 | 835
272 | 266 | 260
2442 | 798
254 | | 72DLH14 | 41 | 72 | < 85
694 | 85-99
58950 | 100-129
58950 | 454 | 447 | 441
400 | 435
435 | 427 | 421
421 | 415 | 411 | 405 | 399 | 393 | 388 | 382 | 378 | 372 | | 72DLH15 | 44 | 72 | 794 | 67530 | 67530 | 171
520 | 167
513 | 163
504 | 159
496 | 155
489 | 152
483 | 149
475 | 146
468 | 143
462 | 139
454 | 136
448 | 133
442 | 131
436 | 128
429 | 125
423 | | 72DLH16 | 50 | 72 | 918 | 78060 | 78060 | 191
601 | 187
592 | 183
585 | 178
576 | 174
567 | 171
559 | 167
552 | 163
544 | 160
537 | 156
529 | 152
522 | 150
514 | 147
507 | 143
501 | 140
493 | | 72DLH17 | 56 | 72 | 1033 | 87810 | 87810 | 225
676 | 219
667 | 214
657 | 209
648 | 205
639 | 200
630 | 196
621 | 191
612 | 188
603 | 183
595 | 179
586 | 175
579 | 171
571 | 169
564 | 1 <mark>65</mark>
556 | | 72DLH18 | 59 | 72 | 1210 | 102870 | 102870 | 256
792 | 250
780 | 245
768 | 239
757 | 233
745 | 228
735 | 224 724 | 218
718 | 213
705 | 209
694 | 205
685 | 200
675 | 196
666 | 191
657 | 188
648 | | 72DLH19 | 70 | 72 | 1419 | 120600 | 120600 | 289
928 | 283
913 | 276 900 | 270
886 | 265
873 | 258
859 | 252
847 | 247
835 | 242
823 | 236
811 | 231
799 | 227 789 | 222
777 | 217
766 | 212
756 | | | . • | | | 3008 | 5003 | 328 | 321 | 313 | 306 | 300 | 293 | 286 | 280 | 274 | 268 | 263 | 257 | 251 | 247 | 241 | #### LRED | | | | | | | | | L | F3 | 2) | | | | | | | | | | | | |----------------------|---------------------------|-------------|-------------|-----------------------|-------------------------|-------------|-------------|-------------|-------------|--------------------------|-------------|-------------|-------------|-------------|-------------|-------------------|-------------|------------|----------------|--------------------|------------| | | | | | | ANDARD I | | | | | | | - | | | | | | | | | | | Joist | A | Dth | Mari | | d on a 50 ks | i Maxim | num Yie | ld Stren | igth - L | oads SI | nown in | Pound | s per Li | inear Fo | ot (plf) | | | | | | | | Designation | Approx. Wt
in Lbs. Per | Depth
in | Max
Load | | LOAD* | | | | | | | | SPAN | N FEET | | | | | | | | | | Linear Ft | inches | (plf) | | tween | | | | | | | | | | | | | | | | | | 00011145 | (Joists only) | -00 | < 81 | 81-99
78240 | 100-111
78240 | 112 | 115 | 118 | 121 | 124 | 127 | 130 | 133 | 136 | 139 | 142 | 145 | 148 | 151 | 155 | 160 | | 80DLH15 | 40 | 80 | 966 | 70240 | 70240 | 699
321 | 663
296 | 632
275 | 602
255 | 575
236 | 549
220 | 525
205 | 503
192 | 482
179 | 461
167 | 443
157 | 425
147 | 408
139 | 392
130 | 371
120 | 347
109 | | 80DLH16 | 46 | 80 | 1161 | 94020 | 94020 | 840 | 802 | 763 | 727 | 691 | 658 | 628 | 600 | 574 | 549 | 525 | 504 | 483 | 463 | 439 | 411 | | 80DLH17 | 53 | 80 | 1341 | 108630 | 108630 | 375
971 | 347
926 | 321
881 | 297
839 | 276
800 | 257
765 | 240
731 | 224
699 | 209
669 | 196
641 | 184
615 | 172
590 | 162
567 | 152
545 | 517 | 128
485 | | 00011140 | 00 | 00 | 4540 | 400700 | 100700 | 451 | 416 | 386 | 358 | 332 | 309 | 288 | 269 | 252 | 235 | 221 | 207 | 195 | 183 | 169 | 154 | | 80DLH18 | 60 | 80 | 1518 | 122760 | 122760 | 1097
516 | 1044
477 | 993
441 | 947
409 | 903
380 | 863
354 | 825
330 | 789
308 | 756
288 | 723
270 | 695
253 | 666
237 | 641
223 | 615
210 | 584
194 | 548
176 | | 80DLH19 | 67 | 80 | 1768 | 143220 | 143220 | 1280
578 | 1218
533 | 1160
493 | 1104
458 | 1052
425 | 1005
396 | 960
369 | 918
344 | 878
322 | 840
301 | 806
283 | 774
266 | 743
250 | 714
235 | 677
217 | 635
197 | | 80DLH20 | 75 | 80 | 1987 | 160980 | 160980 | 1446 | 1382 | 1323 | 1268 | 1211 | 1157 | 1104 | 1056 | 1011 | 968 | 927 | 891 | 855 | 821 | 780 | 731 | | | | | < 89 | 89-99 | 100-120 | 646
121 | 596
124 | 552
127 | 512
130 | 475
133 | 443
136 | 412
139 | 385
142 | 360
145 | 337
148 | 316
151 | 297
155 | 279
160 | 263
165 | 243
170 | 220
175 | | 88DLH16 | 46 | 88 | 1048 | 93270 | 93270 | 771 | 735 | 701 | 671 | 642 | 615 | 591 | 567 | 545 | 524 | 503 | 477 | 448 | 422 | 398 | 376 | | 88DLH17 | 51 | 88 | 1185 | 105450 | 105450 | 361
871 | 336
830 | 313
789 | 291
753 | 272
719 | 254
687 | 238
659 | 223
630 | 210
605 | 197
579 | 186
557 | 172
528 | 156
495 | 143
465 | 130
437 | 119
412 | | | 31 | 00 | | | | 404 | 375 | 349 | 325 | 304 | 284 | 266 | 249 | 234 | 220 | 207 | 191 | 173 | 159 | 146 | 133 | | 88DLH18 | 58 | 88 | 1359 | 120930 | 120930 | 1001
460 | 953
427 | 908
397 | 866
370 | 827
346 | 791
323 | 756
303 | 725
284 | 695 | 666
250 | 639
236 | 607
218 | 569
199 | 535
181 | 503 | 474
152 | | 88DLH19 | 65 | 88 | 1572 | 139890 | 139890 | 1157 | 1101 | 1049 | 999 | 954 | 912 | 873 | 836 | 801 | 770 | 738 | 701 | 657 | 617 | 580 | 547 | | 88DLH20 | 76 | 88 | 1808 | 160950 | 160950 | 521
1334 | 484
1281 | 450
1232 | 420
1184 | 392
1133 | 367
1085 | 343
1041 | 322
998 | 302
959 | 284
921 | 267
885 | 248
841 | 225
790 | 205
743 | 187
700 | 172
660 | | | | | | | | 623 | 579 | 539 | 502 | 469 | 438 | 410 | 385 | 361 | 340 | 320 | 296 | 269 | 246 | 224 | 206 | | 88DLH21 | 89 | 88 | 2231 | 198540 | 198540 | 1649
724 | 1568
673 | 1494
626 | 1425
584 | 1361
545 | 1301
509 | 1244
477 | 1191
447 | 1143
420 | 1097
395 | 1053
372 | 999
344 | 936
313 | 880
285 | 827
261 | 779
239 | | | | | < 97 | 97-99 | 100-129 | 130 | 133 | 136 | 139 | 142 | 145 | 148 | 151 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | | 96DLH17 | 52 | 96 | 1085 | 105270 | 105270 | 810
389 | 776
363 | 744
339 | 711
318 | 684
298 | 657
280 | 632
263 | 608
247 | 578
229 | 542
208 | 509
190 | 480
173 | 452
159 | 427
146 | 404
134 | 382
124 | | 96DLH18 | 58 | 96 | 1222 | 118500 | 118500 | 912 | 875 | 839 | 803 | 770 | 740 | 713 | 686 | 653 | 615 | 579 | 546 | 516 | 488 | 463 | 438 | | 96DLH19 | 66 | 96 | 1460 | 141660 | 141660 | 443
1091 | 413
1046 | 386
1001 | 362
957 | 917 | 319
878 | 300
842 | 282
809 | 261
768 | 720 | 216
676 | 198
636 | 181
601 | 166
566 | 1 <u>53</u>
536 | 141
507 | | 96DLH20 | 74 | 96 | 1644 | 159420 | 159420 | 502
1236 | 469
1184 | 438
1131 | 410
1083 | 385
1037 | 361
993 | 340
952 | 320
915 | 296
868 | 269
815 | 246
766 | 224
721 | 206
680 | 189
642 | 174
607 | 161
574 | | 96DLH20 | 74 | 90 | 1044 | 159420 | 159420 | 569 | 531 | 496 | 465 | 436 | 409 | 385 | 362 | 336 | 305 | 277 | 254 | 233 | 214 | 196 | 181 | | 96DLH21 | 90 | 96 | 2062 | 200010 | 200010 | 1541
698 | 1473 | 1410 | 1350 | 1296
535 | 1243 | 1196
473 | 1149
445 | 1093 | 1026
374 | 965
341 | 908
312 | 856
286 | 809
263 | 765
242 | 724
224 | | 96DLH22 | 102 | 96 | 2310 | 224070 | 224070 | 1725 | 1662 | 1601 | 1542 | 1487 | 1436 | 1382 | 1329 | 1264 | 1188 | 1118 | 1054 | 995 | 941 | 890 | 843 | | | | | < 105 | 10! | 5-138 | 811
139 | 757
142 | 708 145 | 148 |
622
151 | 584
155 | 160 | 517
165 | 479
170 | 435
175 | 396
180 | 362
185 | 332
190 | 305
195 | 281 | 259
205 | | 104DLH18 | 59 | 104 | 1100 | | 5470 | 831 | 798 | 768 | 734 | 708 | 674 | 635 | 601 | 568 | 537 | 508 | 482 | 458 | 435 | 414 | 394 | | 104DLH19 | 67 | 104 | 1337 | 14 | 0430 | 426
1011 | 971 | 375
933 | 353
897 | 3 <mark>32</mark>
861 | 307
819 | 770 | 255
727 | 233
686 | 213
648 | 195
613 | 180
581 | 167
552 | 154
524 | 142
497 | 132
473 | | | | | | | | 484 | 453 | 426 | 401 | 377 | 34 9 | 317 | 289 | 265 | 242 | 222 | 204 | 189 | 175 | 162 | 150 | | 104DLH20 | 75 | 104 | 1504 | 15 | 7890 | 1146
548 | 1107
513 | 1071
483 | 1032
453 | 992
427 | 944
395 | 886
359 | 833
327 | 784
299 | 739
274 | 698
251 | 660
232 | 626
214 | 593
198 | 563
184 | 535
170 | | 104DLH21 | 90 | 104 | 1890 | 19 | 8480 | 1434 | 1376 | 1322 | 1271 | 1220 | 1160 | 1091 | 1028 | 970 | 917 | 866 | 821 | 779 | 740 | 703 | 668 | | 104DLH22 | 104 | 104 | 2119 | 22 | 2540 | 1607 | 632
1551 | 593
1499 | 558
1449 | 525
1401 | 486
1340 | 442
1261 | 403
1189 | 368
1121 | 337
1059 | 307
1001 | 284
949 | 263
901 | 244
855 | 226
812 | 209
774 | | 10.151.1100 | | | 2001 | | | 783 | 734 | 689 | 648 | 610 | 564 | 513 | 468 | 428 | 392 | 359 | 331 | 306 | 283 | 262 | 244 | | 104DLH23 | 109 | 104 | 2334 | 24 | 5100 | 1772
819 | 1712
768 | 1644
721 | 1578
678 | 1514
638 | 1437
590 | 1348
536 | 1267
489 | 1192
447 | 1125
410 | 1062
377 | 1004
347 | 952
320 | 902
296 | 857
274 | 814
254 | | 440011140 | 0.7 | 440 | < 113 | | 3-147 | 148 | 151 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | | 112DLH19 | 67 | 112 | 1223 | 13 | 8150 | 935
466 | 900
439 | 857
406 | 805
369 | 759
336 | 716
308 | 677
281 | 643
259 | 610
238 | 579
220 | 549
203 | 523
189 | 498
175 | 476
162 | 454
151 | 433
142 | | 112DLH20 | 76 | 112 | 1384 | 15 | 6360 | 1065
528 | 1032
497 | 985
459 | 927
418 | 873
381 | 824
348 | 780 | 740
293 | 702
270 | 667
249 | 632
231 | 603
213 | 574
198 | 547
184 | 522
171 | 500
160 | | 112DLH21 | 91 | 112 | 1743 | 19 | 6950 | 1337 | 1287 | 1223 | 1150 | 1083 | 1022 | 319
966 | 915 | 867 | 823 | 782 | 744 | 709 | 676 | 645 | 616 | | 112DLH22 | 104 | 112 | 1956 | 22 | 1010 | 650
1499 | 612
1451 | 566
1392 | 514
1321 | 469
1250 | 429
1181 | 393
1117 | 361
1057 | 333
1002 | 306
952 | 283
904 | 263
860 | 244
820 | 227 782 | 211
745 | 198
712 | | MEDLINEZ | 104 | 112 | 1930 | | 1010 | 755 | 711 | 657 | 598 | 545 | 498 | 457 | 419 | 386 | 356 | 329 | 306 | 283 | 264 | 246 | 229 | | 112DLH23 | 110 | 112 | 2155 | 24 | 3540 | 1653
790 | 1601
744 | 1535
688 | 1454
625 | 1369
571 | 1288
522 | 1214
478 | 1147
439 | 1086
404 | 1030
373 | 977
345 | 928
320 | 882
297 | 839
276 | 800
257 | 763
239 | | 112DLH24 | 131 | 112 | 2555 | 28 | 6660 | 1956 | 1895 | 1818 | 1727 | 1631 | 1539 | 1455 | 1379 | 1307 | 1241 | 1179 | 1123 | 1070 | 1019 | 972 | 928 | | | | | < 121 | 12 | 1-165 | 957
166 | 901
170 | 834
175 | 758
180 | 691
185 | 632
190 | 579
195 | 532
200 | 489
205 | 451
210 | 418
215 | 387
220 | 359
225 | 334
230 | 311
235 | 291
240 | | 120DLH20 | 77 | 120 | 1229 | | 8650 | 896 | 856 | 808 | 766 | 726 | 691 | 658 | 627 | 598 | 570 | 544 | 521 | 498 | 477 | 457 | 439 | | 120DLH21 | 92 | 120 | 1528 | 18 | 4860 | 430
1122 | 400
1072 | 367
1012 | 338
959 | 311
908 | 287
864 | 265
821 | 246
782 | 228
745 | 212
710 | 198
678 | 185
648 | 172
620 | 161
593 | 151
569 | 142
545 | | | | | | | | 530 | 494 | 452 | 416 | 383 | 353 | 326 | 303 | 281 | 262 | 244 | 227 | 212 | 199 | 186 | 173 | | 120DLH22 | 104 | 120 | 1751 | 21 | 1920 | 1283
616 | 1235
574 | 1169
526 | 1106
483 | 1049
445 | 997
411 | 949
380 | 903
352 | 860
327 | 821
304 | 783
283 | 749
265 | 716
247 | 686
231 | 657
217 | 629
204 | | 120DLH23 | 111 | 120 | 1938 | 23 | 4480 | 1415 | 1361 | 1287 | 1219 | 1157 | 1099 | 1046 | 995 | 948 | 903 | 862 | 822 | 786 | 751 | 719 | 689 | | _ | 111 | 0 | | | 1100 | | 0.0 | | | | 400 | 0.0- | 0.00 | | | | | | | | 213 | | 120DLH24 | 132 | 120 | 2298 | | 8070 | 644
1676 | 601
1610 | 551
1522 | 506
1441 | 466
1367 | 430
1300 | 397
1237 | 369
1177 | 341
1122 | 318
1070 | 296
1022 | 276
977 | 258
934 | 241
894 | 227
857 | 821 | | 120DLH24
120DLH25 | | | | 27 | | | | | | | | | | | | | | | | | | # American National Standard SJI-LH/DLH-2010 # STANDARD ASD LOAD TABLE # **DEEP LONGSPAN STEEL JOISTS, DLH-SERIES** Based on a 50 ksi Maximum Yield Strength Spans up to and including 144 ft. adopted by the Steel Joist Institute May 25, 1983 Spans greater than 144 ft. up to and including 240 ft. adopted by the Steel Joist Institute May 18, 2010 Revised to May 18, 2010 – Effective December 31, 2010 The **BLACK** figures in the Load Table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD DLH-**Series Steel Joists. The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the DEAD load. In all cases the DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the LIVE load. The approximate joist weights do not include accessories. The RED figures in the Load Table represent the uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the uniform load for supplementary deflection criteria (i.e. a uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated load exceed the TOTAL load-carrying capacity of the joist. The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'–0" and extends up through 100'–0". Where the joist span is in the GRAY SHADED area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until all rows of bridging are completely installed. The GRAY SHADED area starts after 100'-0" and extends up through 240'-0". The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows: $I_j = 26.767(W)(L^3)(10^{-6})$, where W= RED figure in the Load Table, and L = (span - 0.33) in feet. Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns. *The safe uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column. To solve for a RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table - 0.33 feet)² and divide by (the actual span - 0.33 feet)². In no case shall the calculated load exceed the TOTAL load-carrying capacity of the joist. | | | | | | | | | | | | SD | | | | | | | | | | |----------------------|----------------------------|-------------|-------------|----------------|---------|------------|-------------------|------------|--------------------|------------|------------|--------------------|----------------|------------|--------------------------|--------------------------|------------|------------|--------------------------|------------| | | | | | | | | | | | | SPAN STE | | | | | | | | | | | Joist
Designation | Approx. Wt in Lbs. Per | Depth
in | Max
Load | SAFE L | bs. | | | | | | | 5 | SPAN IN FEI | ET . | | | | | | | | | Linear Ft
(Joists only) | inches | plf
< 62 | Betw
62- | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | | 52DLH10 | 25 | 52 | 432 | 268 | 800 | 298
171 | 291
165 | 285
159 | 279
154 | 273
150 | 267
145 | 261
140 | 256
136 | 251
132 | 246
128 | 241
124 | 236
120 | 231
116 | 227
114 | 223
110 | | 52DLH11 | 26 | 52 | 475 | 294 | 20 | 327 | 320 | 313 | 306 | 299 | 293 | 287 | 281 | 275 | 270 | 264 | 259
132 | 254 | 249 | 244 | | 52DLH12 | 29 | 52 | 529 | 328 | 20 | 187
365 | 181
357 | 174
349 | 169
342 | 164
334 | 158
327 | 1 <u>53</u>
320 | 149
314 | 144
307 | 140
301 | 135
295 | 289 | 128
284 | 278 | 120
273 | | 52DLH13 | 34 | 52 | 643 | 398 | 40 | 204
443 | 197
433 | 191
424 | 185
414 | 179
406 | 173
397 | 168
389 | 163
381 | 158
373 | 153
366 | 149
358 | 144
351 | 140
344 |
135
338 | 132
331 | | 52DLH14 | 39 | 52 | 735 | 455 | 680 | 247
507 | 239
497 | 231
486 | 224
476 | 216
466 | 209
457 | 203
447 | 197
438 | 191
430 | 185
421 | 180
413 | 174
405 | 170
397 | 164
390 | 159
382 | | | | | | | | 276 | 266 | 258 | 249 | 242 | 234 | 227 | 220 | 213 | 207 | 201 | 194 | 189 | 184 | 178 | | 52DLH15 | 42 | 52 | 826 | 512 | | 569
311 | 557
301 | 545
291 | 533
282 | 522
272 | 511
264 | 500
256 | 490
247 | 480
240 | 470
233 | 461
226 | 451
219 | 443
213 | 434
207 | 426
201 | | 52DLH16 | 45 | 52 | 890 | 552 | 200 | 614
346 | 601
335 | 588
324 | 575
314 | 563
304 | 551
294 | 540
285 | 528
276 | 518
267 | 507
260 | 497
2 <mark>52</mark> | 487
245 | 478
237 | 468
230 | 459
224 | | 52DLH17 | 52 | 52 | 1025 | 635 | i40 | 706
395 | 691
381 | 676
369 | 661
357 | 647
346 | 634
335 | 620
324 | 608
315 | 595
304 | 583
296 | 572
286 | 560
279 | 549
270 | 539
263 | 528
255 | | ECDI III4 | 26 | 50 | <67 | 67- | | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106
248 | 107 | 108 | 109 | 110 | 111
227 | 112 | | 56DLH11 | | 56 | 421 | 282 | | 288
169 | 283
163 | 277
158 | 272
153 | 267
149 | 262
145 | 257
140 | 253
136 | 133 | 244
129 | 239
125 | 235
122 | 231
118 | 115 | 223
113 | | 56DLH12 | 30 | 56 | 484 | 324 | | 331
184 | 324
178 | 318
173 | 312
168 | 306
163 | 300
158 | 295
153 | 289
150 | 284
145 | 278
141 | 273
137 | 268
133 | 263
130 | 259
126 | 254
123 | | 56DLH13 | 34 | 56 | 586 | 392 | | 401
223 | 394
216 | 386
209 | 379
204 | 372
197 | 365
191 | 358
186 | 351
181 | 344
175 | 338
171 | 331
166 | 325
161 | 319
157 | 314
152 | 308
149 | | 56DLH14 | 39 | 56 | 662 | 443 | 60 | 453
249 | 444
242 | 435
234 | 427
228 | 419
221 | 411
214 | 403
209 | 396
202 | 388
196 | 381
190 | 375
186 | 368
181 | 361
175 | 355
171 | 349
167 | | 56DLH15 | 42 | 56 | 756 | 506 | 80 | 518
281 | 508
272 | 498
264 | 488
256 | 478
248 | 469
242 | 460
234 | 451
228 | 443
221 | 434
215 | 426
209 | 419
204 | 411
198 | 403
192 | 396
188 | | 56DLH16 | 46 | 56 | 816 | 546 | 80 | 559
313 | 548
304 | 537
294 | 526
285 | 516
277 | 506
269 | 496
262 | 487
254 | 478
247 | 469 | 460
233 | 452
227 | 444
221 | 436
214 | 428
209 | | 56DLH17 | 51 | 56 | 941 | 630 | 120 | 643
356 | 630
345 | 618
335 | 605
325 | 594
316 | 582
306 | 571
298 | 560
289 | 549
281 | 539
273 | 529
266 | 520
258 | 510
251 | 501
245 | 492
238 | | | | | < 71 | | 100-105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | | 60DLH12 | 29 | 60 | 439 | 31200 | 31200 | 295
168 | 289
163 | 284
158 | 279
154 | 274
150 | 270
146 | 265
142 | 261
138 | 256
134 | 252
131 | 248
128 | 244
124 | 240
121 | 236
118 | 232
115 | | 60DLH13 | 35 | 60 | 534 | 37920 | 37920 | 358
203 | 351
197 | 345
191 | 339
187 | 333
181 | 327
176 | 322
171 | 316
167 | 311
163 | 306
158 | 301
154 | 296
151 | 291
147 | 286
143 | 282
139 | | 60DLH14 | 40 | 60 | 594 | 42140 | 42140 | 398
216 | 391
210 | 383
205 | 376
199 | 370
193 | 363 | 356
183 | 350
178 | 344
173 | 338
170 | 332
165 | 327
161 | 321
156 | 316
152 | 310
149 | | 60DLH15 | 43 | 60 | 697 | 49460 | 49460 | 467
255 | 458
248 | 450
242 | 442
235 | 434
228 | 427
223 | 419 | 412
210 | 405
205 | 398 | 392
194 | 385
190 | 379
185 | 373
180 | 367
175 | | 60DLH16 | 46 | 60 | 766 | 54380 | 54380 | 513 | 504 | 494 | 485 | 476 | 468 | 460 | 451 | 444 | 436 | 428 | 421 | 414 | 407 | 400 | | 60DLH17 | 52 | 60 | 880 | 62500 | 62500 | 285
590 | 277
579 | 269
569 | 558 | 548 | 538 | 529 | 235
519 | 510 | 501 | 217
493 | 211
484 | 206
476 | 201
468 | 196
460 | | 60DLH18 | 59 | 60 | 1016 | 72120 | 72120 | 324
681 | 315
668 | 306
656 | 298
644 | 290
632 | 283
621 | 275
610 | 267 599 | 589 | 254
578 | 247
568 | 241
559 | 235
549 | 228
540 | 223
531 | | | | | <76 | 76-99 1 | 100-113 | 366
114 | 357
115 | 346
116 | 337
117 | 327
118 | 319
119 | 310
120 | 303
121 | 294
122 | 286
123 | 279
124 | 272
125 | 266
126 | 259
127 | 252
128 | | 64DLH12 | 31 | 64 | 396 | 30080 | 30080 | 264
153 | 259
150 | 255
146 | 251
142 | 247
138 | 243
135 | 239
132 | 235
129 | 231
125 | 228
122 | 224
119 | 221
116 | 218
114 | 214
111 | 211
109 | | 64DLH13 | 34 | 64 | 480 | 36500 | 36500 | 321
186 | 315
181 | 310
176 | 305
171 | 300
168 | 295
163 | 291 | 286
155 | 281
152 | 277
148 | 273
144 | 269
141 | 264
137 | 260
134 | 257
131 | | 64DLH14 | 40 | 64 | 550 | 41820 | 41820 | 367
199 | 360
193 | 354
189 | 349
184 | 343
179 | 337
174 | 332
171 | 326
166 | 321
162 | 316
158 | 311
154 | 306
151 | 301
147 | 296
143 | 292
140 | | 64DLH15 | 43 | 64 | 631 | 47940 | 47940 | 421 | 414 | 407 | 400 | 394 | 387 | 381 | 375 | 369 | 363 | 358 | 352 | 347 | 341 | 336 | | 64DLH16 | 46 | 64 | 710 | 53960 | 53960 | 474 | 466 | 458 | 450 | 211
443 | 435 | 201
428 | 196
421 | 191
414 | 187
407 | 182
401 | 177
394 | 173
388 | 170
382 | 165
376 | | 64DLH17 | 52 | 64 | 818 | 62180 | 62180 | 262
546 | 254
536 | 248
527 | 242
518 | 235
509 | 501 | 224
492 | 218
484 | 213
476 | 208
468 | 203
461 | 198
454 | 193
446 | 189
439 | 184
432 | | 64DLH18 | 59 | 64 | 945 | 71800 | 71800 | 298
630 | 290
619 | 283
608 | 275
598 | 268
587 | 262
578 | 255
568 | 248
559 | 243
549 | 237
540 | 231
532 | 226
523 | 220
515 | 215
507 | 210
499 | | | | | < 81 | 81-99 1 | | 337
122 | 328
123 | 320
124 | 311
125 | 304
126 | 296
127 | 288
128 | 282
129 | 274
130 | 267
131 | 261
132 | 255
133 | 249
134 | 243
135 | 237
136 | | 68DLH13 | 37 | 68 | 433 | | 35100 | 288 | 284 | 279 | 275 | 271 | 267 | 263 | 259 | 255 | 252 | 248 | 244 | 241 | 237 | 234 | | 68DLH14 | 40 | 68 | 499 | 40420 | 40420 | 171
332 | 168
327 | 164
322 | 317 | 155
312 | 308 | 149
303 | 145
299 | 142
294 | 138
290 | 135
286 | 133
281 | 130
277 | 127
273 | 124
269 | | 68DLH15 | 44 | 68 | 560 | 45320 | 45320 | 184
372 | 179
365 | 175
360 | 171
354 | 167
348 | 163
343 | 159
337 | 155
332 | 152
327 | 148
322 | 145
317 | 312 | 138
308 | 135
303 | 133
299 | | 68DLH16 | 49 | 68 | 663 | 53740 | 53740 | 206
441 | 433 | 196
427 | 191
420 | 187
413 | 182
407 | 178
400 | 174
394 | 170
388 | 166
382 | 1 <mark>62</mark>
376 | 158
371 | 155
365 | 152
360 | 148
354 | | 68DLH17 | 55 | 68 | 748 | 60560 | 60560 | 242
497 | 236
489 | 230
481 | 225
474 | 219
467 | 214
460 | 209
453 | 204
446 | 199
439 | 195
433 | 190
427 | 186
420 | 182
414 | 178
408 | 174
403 | | 68DLH18 | 61 | 68 | 865 | | 70100 | 275
575 | 268
566 | 262
557 | 256
549 | 249
540 | 244
532 | 238
524 | 232
516 | 228
508 | 222 501 | 217
493 | 212
486 | 208
479 | 203
472 | 198
465 | | 68DLH19 | 67 | 68 | 997 | | 80720 | 311 | 304
651 | 297
641 | 289
631 | 283
621 | 276
611 | 269
601 | 263
592 | 257
583 | 251
574 | 246
565 | 240
557 | 234
548 | 230
540 | 225
532 | | OODENIA | o, | 00 | | | | 353 | 344 | 336 | 328 | 320 | 313 | 305 | 298 | 291 | 285 | 278 | 272 | 266 | 260 | 254 | | 72DLH14 | 41 | 72 | < 85
462 | 85-99
39300 | 39300 | 303 | 131
298 | 132
294 | 133
290 | 134
285 | 135
281 | 136
277 | 137
274 | 138
270 | 139
266 | 140
262 | 141
259 | 142
255 | 143
252 | 144
248 | | 72DLH15 | 44 | 72 | 530 | 45020 | 45020 | 171
347 | 167
342 | 163
336 | 1 <u>59</u>
331 | 155
326 | 152
322 | 149
317 | 146
312 | 143
308 | 139
303 | 136
299 | 133
295 | 131
291 | 128
286 | 125
282 | | 72DLH16 | 50 | 72 | 612 | 52040 | 52040 | 191
401 | 187
395 | 183
390 | 178
384 | 174
378 | 171
373 | 167
368 | 163
363 | 160
358 | 156
353 | 152
348 | 150
343 | 147
338 | 143
334 | 140
329 | | 72DLH17 | 56 | 72 | 689 | | 58540 | 225
451 | 219
445 | 214
438 | 209
432 | 205
426 | 200
420 | 196
414 | 191
408 | 188
402 | 1 <mark>83</mark>
397 | 179
391 | 175
386 | 171
381 | 1 <mark>69</mark>
376 | 165
371 | | 72DLH18 | 59 | 72 | 807 | | 68580 | 256
528 | 250
520 | 245
512 | 239
505 | 233
497 | 228
490 | 224
483 | 218
479 | 213
470 | 209
463 | 205
457 | 200
450 | 196
444 | 191
438 | 188
432 | | | | | | | | 289 | 283 | 276 | 270 | 265 | 258 | 252 | 247 | 242 | 236 | 231 | 227 | 222 | 217 | 212 | | 72DLH19 | 70 | 72 | 946 | 80400 | 80400 | 619
328 | 609
321 | 600
313 | 591
306 | 582
300 | 573
293 | 565
286 | 557
280 | 549
274 | 541
268 | 533
263 | 526
257 | 518
251 | 511
247 | 504
241 | | | | | _ | _ | 4 | A | 3)1 | | | | | | | | | | | | |-------------|--|--------|--------------|----------------
----------------------|----------------|-------------------|----------------|-------------------------|-----------------------|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------------------|-------------------|-------------------|-------------------|------------|--------------------| | | STANDARD LOAD TABLE LONGSPAN STEEL JOISTS, DLH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) | loiet | STANDARD LOAD TABLE LONGSPAN STEEL JOISTS, DLH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) Joist Approx. Wt Depth Max SAFE LOAD* | Designation | | Depth | Max
Load | | | | | | | | | | SPAN I | N FEET | | | | | | | | | | Linear Ft | inches | plf | Betw | | | | | | | | | | | | | | | | | | | 90DI H15 | (Joists only) | 90 | < 81
644 | 81-99
52160 | 100-111 52160 | 112 | 115 | 118 | 121 | 124 | 127 | 130 | 133 | 136 | 139 | 142 | 145 | 148 | 151 | 155 | 160 | | 80DLH15 | 40 | 80 | 644 | 32100 | 52100 | 466
321 | 442
296 | 421
275 | 401
255 | 383
236 | 366
220 | 350
205 | 335
192 | 321
179 | 307
167 | 295
157 | 283
147 | 272
139 | 261
130 | 247
120 | 231
109 | | 80DLH16 | 46 | 80 | 774 | 62680 | 62680 | 560 | 535 | 509 | 485 | 461 | 439 | 419 | 400 | 383 | 366 | 350 | 336 | 322 | 309 | 293 | 275 | | 80DLH17 | 53 | 80 | 894 | 72420 | 72420 | 375
647 | 347
617 | 321
587 | 297
559 | 276
533 | 257
510 | 240
487 | 224
466 | 209
446 | 196
427 | 184
410 | 172
393 | 162
378 | 152
363 | 141
345 | 128
323 | | 00521111 | | | | 72420 | 72120 | 451 | 416 | 386 | 358 | 332 | 309 | 288 | 269 | 252 | 235 | 221 | 207 | 195 | 183 | 169 | 154 | | 80DLH18 | 60 | 80 | 1010 | 81840 | 81840 | 731
516 | 696
477 | 662
441 | 631
409 | 602
380 | 575
354 | 550
330 | 526
308 | 504
288 | 482
270 | 463
253 | 444
237 | 427
223 | 410
210 | 389
194 | 366
176 | | 80DLH19 | 67 | 80 | 1179 | 95480 | 95480 | 853 | 812 | 773 | 736 | 701 | 670 | 640 | 612 | 585 | 560 | 537 | 516 | 495 | 476 | 451 | 423 | | 80DLH20 | 75 | 80 | 1325 | 107320 | 107320 | 578
964 | 533
921 | 493
882 | 458
845 | 425
807 | 396
771 | 369
736 | 344
704 | 322
674 | 301
645 | 283
618 | 266
594 | 250
570 | 235
547 | 217
520 | 197
487 | | 00021120 | 10 | 00 | 1020 | 107320 | 107320 | 646 | 596 | 552 | 512 | 475 | 443 | 412 | 385 | 360 | 337 | 316 | 297 | 279 | 263 | 243 | 220 | | 88DLH16 | 46 | 88 | < 89
699 | 89-99
62180 | 100-120
62180 | 121 514 | 124
490 | 127 467 | 130
447 | 133 428 | 136
410 | 139 394 | 142 378 | 1 45
363 | 148 349 | 151
33 <mark>5</mark> | 155 318 | 160
299 | 165 281 | 170
265 | 175 251 | | OODLITTO | 40 | 00 | 055 | 02100 | 02100 | 361 | 336 | 313 | 291 | 272 | 254 | 238 | 223 | 210 | 197 | 186 | 172 | 156 | 143 | 130 | 119 | | 88DLH17 | 51 | 88 | 790 | 70300 | 70300 | 581
404 | 553
375 | 526
349 | 502
325 | 479
304 | 458
284 | 439
266 | 420
249 | 403
234 | 386 | 371
207 | 352
191 | 330
173 | 310 159 | 292
146 | 274
133 | | 88DLH18 | 58 | 88 | 906 | 80620 | 80620 | 667 | 635 | 605 | 577 | 551 | 527 | 504 | 483 | 463 | 444 | 426 | 404 | 379 | 356 | 335 | 316 | | 88DLH19 | 65 | 88 | 1048 | 93260 | 93260 | 460
771 | 427
734 | 397
699 | 370
666 | 346
636 | 323
608 | 303
582 | 284
557 | 267
534 | 250
513 | 236
492 | 218
467 | 199
438 | 181
411 | 165
387 | 1 <u>52</u>
364 | | OODLH 19 | UO | UO | | 93260 | 93260 | 521 | 734
484 | 450 | 420 | 392 | 367 | 343 | 322 | 302 | 284 | 267 | 248 | 225 | 205 | 387
187 | 172 | | 88DLH20 | 76 | 88 | 1206 | 107300 | 107300 | 889
623 | 854
579 | 821
539 | 789
502 | 755
469 | 723
438 | 694
410 | 665 | 639
361 | 614
340 | 590
320 | 560
296 | 527
269 | 495
246 | 467
224 | 440
206 | | 88DLH21 | 89 | 88 | 1487 | 132340 | 132340 | 1099 | 1045 | 996 | 950 | 907 | 867 | 829 | 794 | 762 | 731 | 702 | 666 | 624 | 586 | 551 | 519 | | | | | < 97 | 97-99 | 100-129 | 724
130 | 673
133 | 626
136 | 584
139 | 545
142 | 509
145 | 477
148 | 447
151 | 420
1 55 | 395
160 | 372
165 | 344
170 | 313
175 | 285 | 261
185 | 239
190 | | 96DLH17 | 52 | 96 | 724 | 70180 | 70180 | 540 | 517 | 496 | 474 | 456 | 438 | 421 | 405 | 385 | 362 | 339 | 320 | 302 | 284 | 269 | 255 | | 96DLH18 | 58 | 96 | 814 | 79000 | 79000 | 389
608 | 363
583 | 339
559 | 318
535 | 298
513 | 280
493 | 263
475 | 247
457 | 229
435 | 208
410 | 190
386 | 173
364 | 1 <u>59</u> | 146
326 | 134
308 | 124
292 | | | | | | 79000 | 79000 | 443 | 413 | 386 | 362 | 340 | 319 | 300 | 282 | 261 | 237 | 216 | 198 | 181 | 166 | 153 | 141 | | 96DLH19 | 66 | 96 | 974 | 94440 | 94440 | 727
502 | 697
469 | 667
438 | 638 ¹
410 | 611 | 585
361 | 561
340 | 539
320 | 512
296 | 480
269 | 45 1 246 | 424
224 | 401
206 | 378
189 | 357
174 | 338
161 | | 96DLH20 | 74 | 96 | 1096 | 106280 | 106280 | 824 | 789 | 754 | 722 | 691 | 662 | 635 | 610 | 579 | 543 | 510 | 481 | 453 | 428 | 405 | 382 | | 96DLH21 | 90 | 96 | 1375 | 133340 | 133340 | 569
1027 | 531
982 | 496
940 | 465
900 | 436
864 | 409
829 | 385
797 | 362
766 | 336
728 | 305
684 | 277
643 | 254
605 | 233
571 | 214
539 | 196
510 | 181
482 | | SODETIZI | | 30 | 1373 | 133340 | 133340 | 698 | 652 | 610 | 571 | 5 35 | 503 | 473 | 445 | 412 | 374 | 341 | 312 | 286 | 263 | 242 | 224 | | 96DLH22 | 102 | 96 | 1540 | 149380 | 149380 | 1150
811 | 1108
757 | 1067
708 | 1028
663 | 991 | 957
5 84 | 921
549 | 886
517 | 843 | 792
435 | 745
396 | 702
362 | 664
332 | 627
305 | 594
281 | 562
259 | | | | | < 105 | 105- | | 139 | 142 | 145 | 148 | 151 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | | 104DLH18 | 59 | 104 | 733 | 769 | 80 | 554
426 | 532
400 | 512
375 | 489
353 | 472
332 | 450
307 | 423
279 | 400
255 | 378
233 | 358
213 | 339
195 | 321
180 | 305
167 | 290
154 | 276
142 | 263
132 | | 104DLH19 | 67 | 104 | 892 | 936 | 20 | 674 | 647 | 622 | 598 | 574 | 546 | 513 | 485 | 457 | 432 | 409 | 387 | 368 | 350 | 332 | 315 | | 104DLH20 | 75 | 104 | 1002 | 1052 | 260 | 484
764 | 453
738 | 426
714 | 401
688 | 377
661 | 349
629 | 317
591 | 289
555 | 265
522 | 242
493 | 222
465 | 204
440 | 189
417 | 175
395 | 162
375 | 1 <u>50</u>
357 | | | | | | | | 548 | 513 | 483 | 453 | 427 | 395 | 359 | 327 | 299 | 274 | 251 | 232 | 214 | 198 | 184 | 170 | | 104DLH21 | 90 | 104 | 1260 | 1323 | 320 | 956
673 | 917
632 | 881
593 | 847
558 | 813
525 | 773
486 | 727
442 | 685
403 | 647
368 | 611
337 | 578
307 | 547
284 | 519
263 | 493
244 | 469
226 | 446
209 | | 104DLH22 | 104 | 104 | 1413 | 1483 | 360 | 1071 | 1034 | 999 | 966 | 934 | 893 | 841 | 792 | 747 | 706 | 668 | 633 | 600 | 570 | 542 | 516 | | 104DLH23 | 109 | 104 | 1556 | 1634 | 100 | 783
1181 | 734
1141 | 1096 | 648
1052 | 1009 | 564
956 | 513
899 | 468
845 | 428
795 | 392
750 | 359
708 | 331
670 | 306
635 | 283
602 | 262
571 | 244
543 | | | | | | | | 819 | 768 | 721 | 678 | 638 | 590 | 536 | 489 | 447 | 410 | 377 | 347 | 320 | 296 | 274 | 254 | | 112DLH19 | 67 | 112 | < 113
815 | 921 | | 148
623 | 151 | 155 571 | 160 537 | 165 506 | 170 | 175
451 | 180 | 185
406 | 190
386 | 195 366 | 200
348 | 205
332 | 210
317 | 215 | 220 289 | | | - | | | | | 466 | 439 | 406 | 369 | 336 | 308 | 281 | 259 | 238 | 220 | 203 | 189 | 175 | 162 | 151 | 142 | | 112DLH20 | 76 | 112 | 922 | 1042 | 240 | 710
528 | 688
497 | 657
459 | 618
418 | 582
381 | 549
348 | 520
319 | 493
293 | 468
270 | 445
249 | 422
231 | 402
213 | 383
198 | 365
184 | 348
171 | 333
160 | | 112DLH21 | 91 | 112 | 1162 | 1313 | 300 | 891 | 858 | 816 | 767 | 722 | 681 | 644 | 610 | 578 | 549 | 521 | 496 | 473 | 450 | 430 | 411 | | 112DLH22 | 104 | 112 | 1304 | 1473 | 340 | 999 | 612
967 | 566
928 | 514
880 | 469
833 | 429
787 | 393
744 | 361
705 | 333
668 | 306
635 | 283
602 | 263
574 | 244
546 | 227
521 | 211
497 | 198
474 | | | | | | | | 755 | 711 | 657 | 598 | 545 | 498 | 457 | 419 | 386 | 356 | 329 | 306 | 283 | 264 | 246 | 229 | | 112DLH23 | 110 | 112 | 1437 | 1623 | 000 | 1102
790 | 1067
744 | 1023
688 | 970
625 | 913
571 | 859
522 | 810
478 | 765
439 | 724
404 | 686
373 | 651
345 | 618
320 | 588
297 | 560
276 | 533
257 | 509
239 | | 112DLH24 | 131 | 112 | 1703 | 1924 | 140 | 1304 | 1263 | 1212 | 1151 | 1087 | 1026 | 970 | 919 | 871 | 828 | 786 | 748 | 713 | 680 | 648 | 619 | | | | | < 121 | 121- | 165 | 957
166 | 901
170 | 834
175 | 758
180 | 691
185 | 632
190 | 579
195 | 532
200 | 489
205 | 451
210 | 418
215 | 387
220 | 359
225 | 334
230 | 311
235 | 291
240 | | 120DLH20 | 77 | 120 | 819 | 991 | | 597 | 571 | 538 | 510 | 484 | 461 | 438 | 418 | 399 | 380 | 362 | 347 | 332 | 318 | 305 | 292 | | 120DLH21 | 92 | 120 | 1019 | 1232 | 240 | 430
748 | 400
714 | 367
675 | 338
639 | 311
606 | 287
576 | 265
548 | 246
521 | 228
497 | 212
474 | 198
452 | 185
432 | 172
414 |
161
396 | 151
379 | 142
363 | | | | | | | | 530 | 494 | 452 | 416 | 383 | 353 | 326 | 303 | 281 | 262 | 244 | 227 | 212 | 199 | 186 | 175 | | 120DLH22 | 104 | 120 | 1168 | 1412 | 280 | 855
616 | 823
574 | 779
526 | 737
483 | 699
445 | 665
411 | 632
380 | 602
352 | 574
327 | 547
304 | 522
283 | 499
265 | 477
247 | 457
231 | 438
217 | 420
204 | | 120DLH23 | 111 | 120 | 1292 | 1563 | 320 | 943 | 907 | 858 | 813 | 771 | 733 | 697 | 664 | 632 | 602 | 574 | 548 | 524 | 501 | 479 | 459 | | 120DLH24 | 132 | 120 | 1532 | 1853 | 380 | 644
1117 | 601
1073 | 551
1015 | 506
961 | 912 | 430
867 | 397
824 | 369
785 | 341
748 | 318
713 | 296
681 | 276
651 | 258
623 | 241
596 | 227
571 | 213
548 | | | | | | | | 781 | 728 | 667 | 613 | 565 | 521 | 482 | 447 | 414 | 386 | 359 | 335 | 313 | 293 | 275 | 258 | | 120DLH25 | 152 | 120 | 1756 | 2124 | +20 | 1284
915 | 1231
853 | 1165
782 | 1104
718 | 1047
661 | 994
610 | 946
564 | 900
523 | 858
485 | 819
452 | 782
421 | 748
393 | 715
367 | 684
344 | 656
322 | 628
302 | #### **VULCRAFT JOIST GIRDERS** #### WHAT ARE JOIST GIRDERS? Joist girders are primary framing members. The design is simple span, typically supporting equally spaced concentrated loads from open web steel joists. These concentrated loads are considered to act at the panel points of the joist girder. Joist girders are designed to allow for the efficient use of steel in longer spans for primary framing members. The following weight tables list joist girders from 20" to 96" deep and spans up to 100 feet. (For depths and lengths not listed contact Vulcraft.) The depth designation is determined by the nominal depth at the center of the span, except for offset double pitched girders, where the depth is determined at the ridge. The standard configuration of a joist girder is parallel chord with underslung ends and bottom chord extensions. (Joist girders can be furnished in other configurations, see below.) The standard depth of bearing for joist girders is 7 1/2 inches at the end of the bearing seat.* The standard method of connecting girders to columns is two 3/4" diameter A325 bolts. A loose connection of the lower chord to the column or other support is required during erection in order to stabilize the lower chord laterally and to help brace the joist girder against overturning. CAUTION: IF A RIGID CONNECTION OF THE BOTTOM CHORD IS TO BE MADE TO COLUMN OR OTHER SUPPORT, IT IS TO BE MADE ONLY AFTER THE APPLICATION OF THE DEAD LOADS. THE JOIST GIRDER IS THEN NO LONGER SIMPLY SUPPORTED AND THE SYSTEM MUST BE INVESTIGATED FOR CONTINUOUS FRAME ACTION BY THE SPECIFYING PROFESSIONAL. Joist girders along the perimeter, with joists coming in from one side only, and those with unbalanced loads must be designed such that the reactions pass through the center of the joist girder. The weight tables list the approximate weight per linear foot for a joist girder supporting the panel point loads given by the specifying engineer. NOTE: THE WEIGHT OF THE JOIST GIRDER MUST BE INCLUDED IN THE PANEL POINT LOAD. (SEE THE EXAMPLE ON PAGE 180). For calculating the approximate deflection or checking ponding the following formula may be used in determining the approximate moment of inertia of the joist girder. $I_{in} = 0.027$ NPLd Where N = number of joist spaces, P = panel point load in kips, L = joist girder length in feet and d = effective depth of the joist girder in inches. Contact Vulcraft if a more exact joist girder moment of inertia must be known. *Increase seat depth to 10" if weight of joist girder appears to the right of the stepped blue lines in the weight tables. ## **JOIST GIRDER NOTES** #### SEE PAGE 122 FOR MOMENT CONNECTION DETAILS - (a) All Joist Girder dimensions shown are subject to change when required by the physical size of large Joist Girders. If changes are necessary Vulcraft will so note on the placement plans. - (b) The standard connection for Joist Girders to columns is 13/16 inch slots for 3/4 inch bolts in girder bearings. The girder erection bolts are by others. If the specifying professional wishes to use the Joist Girder bearing to transmit horizontal loads, the required amount of weld to connect the Joist Girder seat to the column should be specified. For additional information see the section of this catalog "JOIST GIRDERS IN MOMENT RESISTIVE FRAMES." (page 121) - (c) Stabilizer plates between the bottom chord angles brace the Joist Girder against overturning during erection and also provide needed lateral bracing for load cases where the bottom chord may be subject to compression such as net uplift. (Refer to SJI 1004.5) - (d) Joist Girder bottom chord struts do not require welding to the stabilizer plate unless required by design to transmit horizontal forces. When welding is required, the amount of weld should be specified by the specifying professional. UNLESS OTHERWISE SPECIFIED, BOTTOM CHORD STRUTS SHOULD NOT BE WELDED. - (e) Joists are connected to the girder by welding except that the joists at (or nearest) the column shall also be bolted (O.S.H.A. Sec. 1910.12 Construction Standards Sec 1518.751). - (f) The //r, of the bottom chord of the Joist Girder cannot exceed 240. For STANDARD Joist Girders, the specifying engineer can use the "Joist Girder Bottom Chord Brace Chart" in conjunction with the "Design Guide Weight Table/Joist Girders, G Series" to select the correct number of bottom chord braces. Joist Girders which must resist uplift, end moments, or axial bottom chord forces may require additional braces. #### JOIST GIRDER NOTES If fixed end moments or uplift are present, the specifying professional should also specify bottom chord braces to be designed and furnished by the joist girder manufacturer. If any additional braces are required due to the compression load in the bottom chord, Vulcraft will indicate their location on the placement plans. Bottom chord braces may be either welded or bolted to the girder, but are typically welded to the joist. | | JOIST GIRDER BO | OTTOM CHORD BRACE CHAR | RT* | |--------------|-----------------|------------------------|---------------| | | | SPAN | IN FEET | | JOIST GIRDER | NO BC BRACES | ONE BC BRACE | TWO BC BRACES | | WEIGHT/FT | | @ CENTERLINE | @ 1/3 POINTS | | 0-22 | 0' to 24' | >24' to 49' | >49' to 73' | | 23-30 | 0' to 28' | >28' to 57' | >57' to 85' | | 31-45 | 0' to 32' | >32' to 65' | >65' to 97' | | 46-66 | 0' to 36' | >36 to 73' | >73' to 110' | | 67-87 | 0' to 41' | >41' to 82' | >82' to 123' | | 88-135 | 0' to 49' | >49' to 98' | >98' to 147' | | 136-173 | 0' to 57' | >57' to 114' | >114' to 171' | ^{*} The bottom chords must be restrained in accordance with Section 1004.5 of The SJI Specifications. # **ECONOMY TIPS** - Designate Joist Girder with exact load required, such as 60G8N11.2K. - 2. If Joist Girder depth is limited below the optimum depth as shown in the weight tables, use the maximum depth permitted by the building system: such as 53G8N12K (odd depths can be designed and furnished). - 3. The Joist Girder designations shown in the weight guide are typical types included only as a guide. The specifying professional is encouraged to specify the exact depth, span and loading that best suits the building. - 4. A Joist Girder depth in inches approximately equal to the span in feet is often a good combination for economy. - 5. The specifying professional is urged to investigate several combinations of bay sizes and joist spaces to find the most economical combination. - The following table illustrates the economy possible using this system. | \perp | Table | e G-1 | ROOF | SYSTEM WEIGHT | FOR RECOMMEN | DED BAY SIZES | | | |---------|---------------|----------------|--------------------|--------------------|--------------------------|--------------------|----------------|----------------| | | BAY | SIZE | | Weight of joists* | + Girders** = Total (PSI | =)*** | | | | Г | laiat | O:udau | | Des | ign Load (PSF) | | Joist | Girder | | | Joist
Span | Girder
Span | 35 (PSF) | 40 (PSF) | 45 (PSF) | 50 (PSF) | Space
(Ft.) | Depth
(In.) | | | 40' | 40' | 1.69 + .75 = 2.44 | 1.78 + .83 = 2.61 | 1.90 + .90 = 2.80 | 2.07 + 1.03 = 3.10 | 6.67 | 48 | | | 40' | 50' | 1.73 + .95 = 2.68 | 1.90 + 1.08 = 2.98 | 2.02 + 1.18 = 3.20 | 2.13 + 1.28 = 3.41 | 6.25 | 60 | | | 40' | 60' | 1.69 + 1.13 = 2.82 | 1.78 + 1.30 = 3.08 | 1.90 + 1.40 = 3.30 | 2.07 + 1.53 = 3.60 | 6.67 | 72 | | | 45' | 40' | 1.89 + .71 = 2.60 | 2.04 + .80 = 2.84 | 2.14 + .89 = 3.03 | 2.41 + .96 = 3.37 | 6.67 | 48 | | | 45' | 50' | 1.98 + .96 = 2.94 | 2.11 + 1.09 = 3.20 | 2.22 + 1.16 = 3.38 | 2.40 + 1.29 = 3.69 | 6.25 | 60 | | 1 | 45' | 60' | 1.89 + 1.16 = 3.05 | 2.04 + 1.24 = 3.28 | 2.14 + 1.38 = 3.52 | 2.41 + 1.49 = 3.90 | 6.67 | 72 | | | 50' | 40' | 2.19 + .72 = 2.91 | 2.28 + .80 = 3.08 | 2.53 + .86 = 3.39 | 2.80 + 1.06 = 3.86 | 6.67 | 48 | | | 50' | 50' | 2.21 + .92 = 3.13 | 2.43 + 1.00 = 3.43 | 2.61 + 1.12 = 3.73 | 2.70 + 1.20 = 3.90 | 6.25 | 60 | | | 50' | 60' | 2.19 + 1.12 = 3.31 | 2.28 + 1.22 = 3.50 | 2.53 + 1.34 = 3.87 | 2.80 + 1.50 = 4.30 | 6.67 | 72 | ^{*} Weight of joists in pounds per square foot. The larger bay sizes become more economical as the column heights increase and in localities with high erection labor costs. Larger bays speed construction by reducing the number of pieces and therefore the number of crane lifts. Encasing the columns for fire proofing or decoration also makes the larger bays more attractive. ^{**} Weight of the joist girders in pounds per square foot. Total weight of joists and joist girders in pounds per square foot. #### JOIST GIRDER IN MOMENT RESISTANT FRAMES When a Joist Girder is used as a component of a moment resistive frame, both the design wind moment and any continuity (usually live load) moment must be specified for each
end of each affected Joist Girder. Provided this information, Vulcraft will design the Joist Girder as a simply supported truss for full gravity loading. The "fixed end" moments are then applied to the Joist Girder. Using the appropriate combinations of the gravity loads, the wind moments, and/or the continuity moments, the critical member stresses are identified and the Joist Girder members are sized accordingly. The Specifying Professional shall clarify when allowable stresses are permitted to be increased or load combinations reduced. (Vulcraft does not design the Joist Girder for any dead load moments unless specifically instructed to do so on the structural drawings.) For this reason it is very important that on the structural drawings the specifying professional specify that all dead loads be applied to the Joist Girders before the bottom chord struts are welded to the stabilizer plates. One of the most important considerations of using a Joist Girder in a moment resistive frame is the connection of the Joist Girder to the column. As with a beam connection, special provisions must be made to develop the required moment capacity. As can be readily seen in Figure 1, the use of a standard Joist Girder seat results in an eccentric moment due to the depth of the seat. This moment must be resisted by the weld group connecting the Joist Girder seat to the cap plate of the column. Vulcraft has done extensive testing of the maximum eccentric top chord force capacity for joist girders. Based on this test program, the maximum horizontal load for 7.5 inch deep seats are presented in Table 1 (below) | Joist Girder (7.5" Seat)
Top Chord Leg Size | ASD
P _a · | LRFD
φP _n - | |--|-------------------------|---------------------------| | 2.5" | 4 | 6 | | 3.0" | 8 | 12 | | 3.5" and larger | 10 | 15 | Table 1 *These values are based on using 3/4 inch A325 bolts and a minimum of two 1/4 inch fillet welds 5 inches long along the sides of the seat. Vulcraft must be notified of seat forces for final seat design. If the axial load due only to the wind moment does not exceed the values in Table 1, a strap angle connecting the Joist Girders together as shown in Figure 2 can be used to resist the continuity moments, By tying the Joist Girder ends together, the Joist Girder-to-cap plate connection need only resist the wind loads, the strap angles do not transfer wind moments. The design of such a strap angle to resist the continuity moments is the responsibility of the specifying professional. When the end moments on the Joist Girders are too large for the seat to resist, it is necessary to utilize a moment plate as shown in Details A-F. The use of this simple moment plate virtually eliminates all eccentricity problems. By using the equations and Table 2 below, the specifying professional can determine the minimum Joist Girder top chord width for most Joist Girders. If the end moments are very large, the Joist Girder loads and/or spacings vary, or other special conditions exist, a more exact analysis is required. Once the Joist Girder top chord width is known, the specifying professional can easily size the moment plate and its weld requirements to complete the connection detail. **EQUATION 1 (ODD NO. OF JOIST SPACES)** $$A = \frac{.028P}{D} (N^2S - .67N + .67 - S)$$ EQUATION 2 (EVEN NO. OF JOIST SPACES) $$A = \frac{.028P}{D}$$ (N²S - .67N + .67) Where: P = Panel point load (kips), N = No. of joist spaces, S = Joist spacing (ft.), D = Joist Girder depth (in.) | Ta | able 2* | |-------------------|-------------------------| | A | Minimum Top Chord Width | | 0.95 - 1.19 | 6" | | 1.20 - 1.78 | 7" | | 1.79 - 2.48 | 8" | | 2.49 - 3.75 | 9" | | 3.76 - 4.76 | 11" | | 4.78 - 8.44 | 13" | | Greater than 8.44 | Consult Vulcraft | Please note that this chart is to be used only for designing moment plates. It is not intended for use as a general detailing aid. *The bearing seat width may be larger than the top chord width. Contact Vulcraft if seat width is needed for determining column plate sizes. #### MOMENT CONNECTION DETAILS Presented below are six suggested details for a moment resistive connection involving roof Joist Girders. Similar details should be utilized for longspan joists with end moments. In all cases, the bottom chord is to be connected to the column with a vertical stabilizer plate which is to be sized to carry the required load and obtain required weld (use 6 x 6 x 3/4 plate minimum for Joist Girders). #### NOTES: - (1) Connections type B & C would also be recommended for floor girder details. - (2) Where a backer bar is required for groove welds, additional clearance must be provided when determining girder hold back dimension. - (3) Similar details would apply at other types of columns. - (4) Additional stiffener plates as required not shown for clarity. - (5) In all details, moment plate design and material is not by Vulcraft. # STANDARD SPECIFICATION # **FOR JOIST GIRDERS** Adopted by the Steel Joist Institute November 4, 1985 Revised to May 18, 2010, Effective December 31, 2010 # SECTION 1000. # SCOPE AND DEFINITION #### 1000.1 SCOPE The Standard Specification for Joist Girders, hereafter referred to as the Specification, covers the design, manufacture, application, and handling and erection of Joist Girders in buildings or other structures, where other structures are defined as those structures designed, manufactured, and erected in a manner similar to buildings. Joist Girders shall be designed using Allowable Stress Design (ASD) or Load and Resistance Factor Design (LRFD) in accordance with this Specification. Joist Girders shall be erected in accordance with the Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, Code of Federal Regulations 29CFR Part 1926 Safety Standards for Steel Erection, Section 1926.757 Open Web Steel Joists. This Specification includes Sections 1000 through 1005. #### 1000.2 DEFINITION The term "Joist Girders", as used herein, refers to open web, load-carrying members utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength has been attained by cold working. Joist Girders are open web steel trusses used as primary framing members. They are designed as simple spans supporting concentrated loads for a floor or roof system. These concentrated loads are normally considered to act at the top chord panel points of the Joist Girders. Joist Girders have been standardized in depths from 20 inches (508 mm) through 120 inches (3048 mm), for spans from 20 feet (6096 mm) through 120 feet (36576 mm). The Joist Girder standard designation in ASD is determined by its nominal depth in inches (mm), the letter "G", followed by the number of joist spaces, the letter "N", and finally the load in kips (kN) at each panel point, and the letter "K". The Joist Girder standard designation in LRFD is determined by its nominal depth in inches (mm), the letter "G", followed by the number of joist spaces, the letter "N", and finally the factored load in kips (kN) at each panel point, and the letter "F". Joist Girders shall be designed in accordance with these specifications to support the loads defined by the specifying professional. Joist Girders are designed and manufactured as either simple framing members with underslung ends and bottom chord extensions or as part of an ordinary steel moment frame (OMF). When used as part of an OMF the **specifying professional** shall be responsible for carrying out all the required frame analyses (i.e. first-order and second-order), provide all the required load information and stiffness data to the joist manufacturer, and indicate the type of Joist Girder to column connections that are being designed on the contract documents. A pitch of the Joist Girder top chord up to 1/2 inch per foot (1:24) is allowed. The standard Joist Girder designation depth shall be the depth at mid-span. #### 1000.3 STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS The design drawings and specifications shall meet the requirements in the Code of Standard Practice for Steel Joists and Joist Girders, except for deviations specifically identified in the design drawings and/or specifications. SECTION 1001. # REFERENCED SPECIFICATIONS, CODES AND STANDARDS #### **1001.1 REFERENCES** American Institute of Steel Construction, Inc. (AISC) ANSI/AISC 360-10 Specification for Structural Steel Buildings American Iron and Steel Institute (AISI) ANSI/AISI S100-2007 North American Specification for Design of Cold-Formed Steel Structural Members ANSI/AISI S100-07/S1-09, Supplement No. 1 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition ANSI/AISI S100-07/S2-10, Supplement No. 2 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition American Society of Testing and Materials, ASTM International (ASTM) ASTM A6/A6M-09, Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling ASTM A36/A36M-08, Standard Specification for Carbon Structural Steel ASTM A242/242M-04 (2009), Standard Specification for High-Strength Low-Alloy Structural Steel ASTM A307-07b, Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength ASTM A325/325M-09, Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi [830 MPa] Minimum Tensile Strength ASTM A370-09ae1, Standard Test Methods and Definitions for Mechanical Testing of Steel Products ASTM A500/A500M-07, Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes ASTM A529/A529M-05, Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality ASTM A572/A572M-07, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel ASTM A588/A588M-05, Standard Specification for High-Strength
Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance ASTM A606/A606M-09, Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance ASTM A992/A992M-06a, Standard Specification for Structural Steel Shapes ASTM A1008/A1008M-09, Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable ASTM A1011/A1011M-09a, Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength #### American Welding Society (AWS) AWS A5.1/A5.1M-2004, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding AWS A5.5/A5.5M:2006, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding AWS A5.17/A5.17M-97:R2007, Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.18/A5.18M:2005, Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.20/A5.20M:2005, Specification for Carbon Steel Electrodes for Flux Cored Arc Welding AWS A5.23/A5.23M:2007, Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding AWS A5.28/A5.28M:2005, Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding AWS A5.29/A5.29M:2005, Specification for Low Alloy Steel Electrodes for Flux Cored Arc Welding #### 1001.2 OTHER REFERENCES The following references are non-ANSI approved documents and as such, are provided solely as sources of commentary or additional information related to topics in this Specification: Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. American Society of Civil Engineers (ASCE) SEI/ASCE 7-10 Minimum Design Loads for Buildings and Other Structures Steel Joist Institute (SJI) SJI-COSP-2010, Code of Standard Practice for Steel Joists and Joist Girders Technical Digest No. 3 (2007), Structural Design of Steel Joist Roofs to Resist Ponding Loads Technical Digest No. 5 (1988), Vibration of Steel Joist-Concrete Slab Floors Technical Digest No. 6 (2011), Structural Design of Steel Joist Roofs to Resist Uplift Loads Technical Digest No. 8 (2008), Welding of Open Web Steel Joists and Joist Girders Technical Digest No. 9 (2008), Handling and Erection of Steel Joists and Joist Girders Technical Digest No. 10 (2003), Design of Fire Resistive Assemblies with Steel Joists Technical Digest No. 11 (2007), Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders Technical Digest No. 12 (2007), Evaluation and Modification of Open Web Steel Joists and Joist Girders Steel Structures Painting Council (SSPC) (2000), Steel Structures Painting Manual, Volume 2, Systems and Specifications, Paint Specification No. 15, Steel Joist Shop Primer, May 1, 1999, Pittsburgh, PA. # SECTION 1002. # **MATERIALS** #### 1002.1 STEEL The steel used in the manufacture of Joist Girders shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength Low-Alloy Structural Steel, ASTM A242/A242M. - Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes, ASTM A500/A500M. - High-Strength Carbon-Manganese Steel of Structural Quality, ASTM A529/A529M. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M. - High-Strength Low-Alloy Structural Steel up to 50 ksi [345 MPa] Minimum Yield Point with Atmospheric Corrosion Resistance, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance, ASTM A606/A606M. - Structural Steel Shapes, ASTM A992/A992M. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable, ASTM A1008/A1008M. - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra High Strength, ASTM A1011/A1011M. or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 1002.2. #### 1002.2 MECHANICAL PROPERTIES Steel used for Joist Girders shall have a minimum yield strength determined in accordance with one of the procedures specified in this section, which is equal to the yield strength* assumed in the design. *The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1 "Yield Point", and in paragraph 13.2 "Yield Strength", of ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, or as specified in paragraph 1002.2 of this specification. Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370, and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A500/A500M, A529/A529M, A572/A572M, A588/A588M, A992/A992M whichever specification is applicable, on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606/A606M, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI North American Specifications for the Design of Cold-Formed Steel Structural Members. They shall also indicate compliance with these provisions and with the following additional requirements: - a) The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 8 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall be not greater than 20 times the least radius of gyration. - d) If any test specimen fails to pass the requirements of the subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. #### **1002.3 WELDING ELECTRODES** The following electrodes shall be used for arc welding: a) For connected members both having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E70XX AWS A5.5: E70XX-X AWS A5.17: F7XX-EXXX, F7XX-ECXXX flux electrode combination AWS A5.18: ER70S-X, E70C-XC, E70C-XM AWS A5.20: E7XT-X, E7XT-XM AWS A5.23: F7XX-EXXX-XX, F7XX-ECXXX-XX AWS A5.28: ER70S-XXX, E70C-XXX AWS A5.29: E7XTX-X, E7XTX-XM b) For connected members both having a specified minimum yield strength of 36 ksi (250 MPa) or one having a specified minimum yield strength of 36 ksi (250 MPa), and the other having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E60XX AWS A5.17: F6XX-EXXX, F6XX-ECXXX flux electrode combination AWS A5.20: E6XT-X, E6XT-XM AWS A5.29: E6XTX-X, E6XTX-XM or any of those listed in Section 102.3(a). Other welding methods, providing equivalent strength as demonstrated by tests, shall be permitted to be used. #### 1002.4 PAINT The standard shop paint is intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15. - b) Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. # SECTION 1003. # DESIGN AND MANUFACTURE #### 1003.1 METHOD Joist Girders shall be designed in accordance with these specifications as simply-supported primary load-carrying members. All loads shall be applied through steel joists, and placed along the Joist Girder top chord. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates use the American Institute of Steel Construction, Specification
for Structural Steel Buildings. - b) For members which are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. ## **Design Basis:** Joist Girder designs shall be in accordance with the provisions in this Standard Specification using Load and Resistance Factor Design (LRFD) or Allowable Strength Design (ASD) as specified by the **specifying professional** for the project. # Loads, Forces and Load Combinations: The loads and forces used for the Joist Girder design shall be calculated by the **specifying professional** in accordance with the applicable building code and specified and provided on the contract drawings. The load combinations shall be specified by the **specifying professional** on the contract drawings in accordance with the applicable building code or, in the absence of a building code, the load combinations shall be those stipulated in SEI/ASCE 7. For LRFD designs, the load combinations in SEI/ASCE 7, Section 2.3 apply. For ASD designs, the load combinations in SEI/ASCE 7, Section 2.4 apply. #### 1003.2 DESIGN AND ALLOWABLE STRESSES #### Design Using Load and Resistance Factor Design (LRFD) Joist Girders shall have their components so proportioned that the required stresses, f_u, shall not exceed φF_n where f_u = requ<mark>ired</mark> stress ksi (MPa) F_n = nominal stress ksi (MPa) φ = resistance factor $\phi F_n = design stress$ #### **Design Using Allowable Strength Design (ASD)** Joist Girders shall have their components so proportioned that the required stresses, f, shall not exceed F_n / Ω where f = required stress ksi (MPa) F_n = nominal stress ksi (MPa) Ω = safety factor $F_n/Ω$ = allowable stress #### Stresses: For Chords: The calculation of design or allowable stress shall be based on a yield strength, F_y, of the material used in manufacturing equal to 50 ksi (345 MPa). For all other Joist Girder elements: The calculation of design or allowable stress shall be based on a yield strength, F_y , of the material used in manufacturing, but shall not be less than 36 ksi (250 MPa) or greater than 50 ksi (345 MPa). Note: Yield strengths greater than 50 ksi shall not be used for the design of any Joist Girder members. (a) **Tension:** $\phi_t = 0.90 \text{ (LRFD)}, \Omega_t = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_v$$ (LRFD) (1003.2-1) Allowable Stress = $$0.6F_y$$ (ASD) (1003.2-2) (b) Compression: $\phi_c = 0.90 \text{ (LRFD)}, \Omega_c = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_{cr}$$ (LRFD) (1003.2-3) Allowable Stress = $$0.6F_{cr}$$ (ASD) (1003.2-4) For members with $$\frac{\ell}{r} \le 4.71 \sqrt{\frac{E}{QF_y}}$$ $$F_{cr} = Q \left[0.658^{\left(QF_{y}/F_{e}\right)} \right] F_{y}$$ (1003.2-5) For members with $$> 4.71 \sqrt{E/QF_y}$$ $$F_{cr} = 0.877 F_{e}$$ (1003.2-6) Where F_e = Elastic buckling stress determined in accordance with Equation 1003.2-7 $$\mathsf{F}_{\mathsf{e}} = \frac{\pi^2 \mathsf{E}}{\left(\ell/\Gamma\right)^2} \tag{1003.2-7}$$ In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for web members, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). For hot-rolled sections and cold formed angles, Q is the full reduction factor for slender compression members as defined in the AISC *Specification for Structural Steel Buildings*, except that when the first primary compression web member is a crimped-end angle member, whether hot-rolled or cold formed. $$Q = [5.25/(w/t)] + t \le 1.0$$ (1003.2-8) Where: w = angle leg length, inches t = angle leg thickness, inches or, $$Q = [5.25/(w/t)] + (t/25.4) \le 1.0$$ (1003.2-9) Where: w = angle leg length, millimeters t = angle leg thickness, millimeters For all other cold-formed sections the method of calculating the nominal compression strength is given in the AISI, North American Specification for the Design of Cold-Formed Steel Structural Members. (c) Bending: $\phi_b = 0.90 \text{ (LRFD)}, \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_n = F_v$ Design Stress = $$\phi_b F_n = 0.9 F_y$$ (LRFD) (1003.2-10) Allowable Stress = $$F_n/\Omega_b = 0.6F_v$$ (ASD) (1003.2-11) For web members of solid round cross section: $F_n = 1.6 F_v$ Design Stress = $$\phi_b F_n = 1.45 F_y$$ (LRFD) (1003.2-12) Allowable Stress = $$F_n/\Omega_b = 0.95F_y$$ (ASD) (1003.2-13) For bearing plates used in Joist Girder seats: $F_n = 1.5 F_y$ Design Stress = $$\phi_b F_n = 1.35 F_v$$ (LRFD) (1003.2-14) Allowable Stress = $$F_n/\Omega_b = 0.90F_v$$ (ASD) (1003.2-15) #### (d) Weld Strength: Shear at throat of fillet welds, flare bevel groove welds, partial joint penetration groove welds, and plug/slot welds. Nominal Shear Stress = $$F_{nw}$$ = 0.6 F_{exx} (1003.2-16) **LRFD**: $\phi_{w} = 0.75$ Design Shear Strength = $$\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A_w$$ (1003.2-17) **ASD**: $\Omega_{\rm W} = 2.0$ Allowable Shear Strength = $$R_n/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx}A_w$$ (1003.2-18) Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations F_{exx} = 70 ksi (483 MPa) Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations F_{exx} = 60 ksi (414 MPa) A_w = effective throat area, where: For fillet welds, A_w = effective throat area, (other design methods demonstrated to provide sufficient strength by testing may be used); For flare bevel groove welds, the effective weld area is based on a weld throat width, T, where $$T mtext{ (inches)} = 0.12D + 0.11 mtext{ (1003.2-19)}$$ Where D = web diameter, inches or, $$T (mm) = 0.12D + 2.8$$ (1003.2-20) Where D = web diameter, mm For plug/slot welds, A_w = cross-sectional area of the hole or slot in the plane of the faying surface provided that the hole or slot meets the requirements of the American Institute of Steel Construction *Specification for Structural Steel Buildings* (and as described in SJI Technical Digest No. 8, "Welding of Open-Web Steel Joists and Joist Girders"). Strength of resistance welds and complete-joint-penetration groove or butt welds in tension or compression (only when the stress is normal to the weld axis) is equal to the base metal strength: $$\phi_t = \phi_c = 0.90 \text{ (LRFD)}$$ $\Omega_t = \Omega_c = 1.67 \text{ (ASD)}$ Design Stress = $$0.9F_v$$ (LRFD) (1003.2-21) Allowable Stress = $$0.6F_v$$ (ASD) (1003.2-22) #### 1003.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratio ℓ/r , where ℓ is the length center-to-center of support points and r is the corresponding least radius of gyration, shall not exceed the following: | Top chord i | nte | rior panels | 90 | |-------------|------|------------------------------|-----| | Top chord e | nd | panels | 120 | | Compression | on r | nembers other than top chord | 200 | | Tension me | mh | ners | 240 | #### **1003.4 MEMBERS** #### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the bottom chord about its vertical axis shall not be less than $\ell/240$ where ℓ is the distance between lines of bracing. The top chord shall be designed as an axial loaded compression member. The radius of gyration of the top chord about the vertical axis shall not be less than Span/575. The top chord shall be considered as stayed laterally by the steel joists provided positive attachment is made. The outstanding part of the top chord member shall be designed such that the allowable reaction from a single joist is the lesser of: $$\phi P_{p}$$ and $\phi P_{p} (1.6 - f_{au}/\phi Q F_{v})$ (LRFD, $\phi = 0.9$) (1003.4-1) $$0.6P_p$$ and $0.6P_p(1.6 - f_a/\Omega QF_v)$ (ASD, $\Omega = 0.6$) (1003.4-2) Where: F_v = Specified minimum yield strength, ksi (MPa) P_p = Plastic failure mode = $[(t^2F_y)/[2(b-k)]][g+5.66(b-k)]$ Q = Form factor defined in Section 1003.2(b) b = width of the outstanding part of the top chord member, in. (mm) $f_{au} = P_u/A = Required compressive stress, ksi (MPa)$ $f_a = P/A = Required compressive stress, ksi (MPa)$ g = width of bearing seat, in. (mm) k = value from angle properties or similar dimension for other members t = thickness of the outstanding part of the top chord member, in. (mm) The top chord and bottom chord shall be designed such that at each joint: $$f_{vmod} \le \phi_v f_n$$ (LRFD, $\phi = 1.00$) (1003.4-3) $$f_{\text{vmod}} \le f_{\text{p}}/\Omega_{\text{v}}$$ (ASD, $\Omega = 1.50$) (1003.4-4) Where: f_n = nominal shear stress = 0.6 F_v , ksi (MPa) $f_t = axial stress = P/A, ksi (MPa)$ $f_V = \text{shear stress} = V/bt, ksi (MPa)$ f_{vmod} = modified shear stress = $(\frac{1}{2})(f_t^2 + 4f_v^2)^{1/2}$ b = length of vertical part(s) of cross section, in. (mm) t = thickness of vertical part(s) of cross section, in. (mm) It is not necessary to design the top chord and bottom chord for the modified shear stress when a round bar web member is continuous through a joint. The minimum required shear of 25 percent of the end reaction is not required when evaluating Equation 1003.4-3 or 1003.4-4. #### (b) Web The vertical shears to be used in the design of the web members shall be determined from full loading, but such vertical shear shall be not less than 25 percent of the end reaction. Interior vertical web members used in modified Warren type web systems that do not support the direct loads through steel joists shall be designed to resist an axial load of 2 percent of the top chord axial force. Tension members shall be designed to resist at least 25 percent of their axial force in compression. #### (c) Joist Girder Extensions Joist Girder extensions are defined as one of three types, top chord extensions (TCX), extended ends, or full depth cantilevers. Joist Girder extensions shall be
designed based on the following: (1) A loading diagram shall be provided for the Joist Girder extension. The diagram shall include the magnitude and location of the loads to be supported, as well as the appropriate load combinations. Any deflection requirements or limits due to the accompanying loads and load combinations on the Joist Girder extension shall be provided by the **specifying professional**. Unless otherwise specified, the joist manufacturer shall check the extension for the specified deflection limit under live load acting simultaneously on both the Joist Girder base span and the extension. The joist manufacturer shall consider the effects of Joist Girder extension loading on the base span of the Joist Girder. This includes carrying the design bending moment due to the loading on the extension into the top chord end panel(s), and the effect on the overall Joist Girder chord and web axial forces. Bracing of Joist Girder extensions shall be clearly indicated on the structural drawings. #### (d) Fillers and Ties In compression members composed of two components, (when fillers, ties or welds are used) they shall be spaced so the ℓ/r ratio for each component does not exceed the ℓ/r ratio of the member as a whole. In tension members composed of two components (when fillers, ties or welds are used), they shall be spaced so that the ℓ/r ratio of each component does not exceed 240. The least radius of gyration shall be used in computing the ℓ/r ratio of a component. #### 1003.5 CONNECTIONS #### (a) Methods Joist connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. #### (1) Welded Connections - a) Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between weld and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 mm) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 mm) in any 1 inch (25 mm) of design weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. ## (2) Welded Connections for Crimped-End Angle Web Members The connection of each end of a crimped angle web member to each side of the chord shall consist of a weld group made of more than a single line of weld. The design weld length shall include, at minimum, an end return of two times the nominal weld size. #### (3) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and weld sampling and testing. (See Technical Digest 8, "Welding of Open Web Steel Joists and Joist Girders"). (4) Weld Inspection by Outside Agencies (See Section 1004.10 of this specification). The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 1003.5(a)(1). Ultrasonic, X-Ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. ## (b) Strength - (1) <u>Joint Connections</u> Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. - (2) Shop Splices Shop splices shall be permitted to occur at any point in chord or web members. Splices shall be designed for the member force, but not less than 50 percent of the member strength. All component parts comprising the cross section of the chord or web member (including reinforcing plates, rods, etc.) at the point of the splice, shall develop an ultimate tensile force of at least 1.2 times the product of the yield strength and the full design area of the chord or web. The "full design area" is the minimum required area such that the required stress shall be less than the design (LRFD) or allowable (ASD) stress. #### (c) Field Splices Field Splices shall be designed by the manufacturer and may be either bolted or welded. Splices shall be designed for the member force, but not less than 50 percent of the member strength. #### (d) Eccentricity Members connected at a joint shall have their center of gravity lines meet at a point, if practical. Eccentricity on either side of the neutral axis of chord members shall be permitted to be neglected when it does not exceed the distance between the centroid and the back of the chord. Otherwise, provision shall be made for the stresses due to eccentricity. Ends of Joist Girders shall be proportioned to resist bending produced by eccentricity at the support. In those cases where a single angle compression member is attached to the outside of the stem of a tee or double angle chord, due consideration shall be given to eccentricity. #### 1003.6 CAMBER Joist Girders shall have approximate cambers in accordance with the following: **TABLE 1003.6-1** | Top Chord | d Length | Approximate Camber | | | | | | | | | |-----------|------------|--------------------|----------|--|--|--|--|--|--|--| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | | | | | | | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | | | | | | | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | | | | | | | | 50'-0" | (15240 mm) | 1" | (25 mm) | | | | | | | | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | | | | | | | | | 70'-0" | (21336 mm) | 2" | (51 mm) | | | | | | | | | 80'-0" | (24384 mm) | 2 3/4" | (70 mm) | | | | | | | | | 90'-0" | (27432 mm) | 3 1/2" | (89 mm) | | | | | | | | | 100'-0" | (30480 mm) | 4 1/4" | (108 mm) | For Joist Girder lengths exceeding 100'-0" a camber equal to Span/300 shall be used. The specifying professional shall give consideration to coordinating Joist Girder camber with adjacent framing. #### 1003.7 VERIFICATION OF DESIGN AND MANUFACTURE #### (a) Design Calculations Companies manufacturing Joist Girders shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. Design data shall be submitted in detail and in the format specified by the Institute. #### (b) In-Plant Inspections Each manufacturer shall verify his ability to manufacture Joist Girders through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel Joist Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The plant inspections are not a guarantee of the quality of any specific joists; this responsibility lies fully and solely with the individual manufacturer. # SECTION 1004. # APPLICATION #### 1004.1 USAGE This specification shall apply to any type of structure where steel joists are to be supported directly by Joist Girders installed as hereinafter specified. Where Joist Girders are used other than on simple spans under equal concentrated gravity loading, as prescribed in Section 1003.1, they shall be investigated and modified when necessary to limit the unit stresses to those listed in Section 1003.2. The magnitude and location of all loads and forces, other than equal concentrated gravity loading, shall be provided on the structural drawings. The **specifying professional** shall design the supporting structure, including the design of columns, connections, and moment plates*. This design shall account for the stresses caused by lateral forces and the stresses due to connecting the bottom chord to the column or other structural support. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the **specifying professional**. The moment plates shall be furnished by other than the joist manufacturer. *For further reference, refer to Steel Joist Institute Technical Digest 11, "Design of Lateral Load Resisting Frames Using Steel Joists and Joist Girders." #### 1004.2 SPAN The span of a Joist Girder shall not exceed 24 times its depth. #### 1004.3 DEPTH Joist Girders may have either parallel chords or a top chord pitch of up to 1/2 inch per foot (1:24). The nominal depth of a Joist Girder shall be the depth at mid-span. #### 1004.4 END SUPPORTS #### (a) Masonry and Concrete A Joist Girder end supported by masonry or concrete shall bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical or lateral forces shall be taken by the **specifying professional** in the design of the steel bearing plate and the masonry or concrete. The ends of Joist Girders shall extend a distance of not less than 6 inches (152 millimeters) over the masonry or concrete support and be anchored to the steel bearing plate. The plate shall be located not more than 1/2 inch (13 millimeters) from the face of the wall and shall be not less than 9 inches (229 millimeters) wide perpendicular to the length of the girder. The plate is to be designed by the **specifying professional** and shall be furnished by other than the joist manufacturer. Where it is deemed necessary to bear less than 6 inches (152 millimeters) over the masonry or concrete support, special consideration is to be given to the design of the steel bearing plate and the masonry or concrete by the **specifying professional**. The girders shall bear a minimum of 4 inches (102 millimeters) on the steel bearing plate. ## (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the **specifying professional** in the design of the steel support. The ends of Joist Girders
shall extend a distance of not less than 4 inches (102 millimeters) over the steel supports and shall have positive attachment to the support, either by bolting or welding. #### **1004.5 BRACING** Joist Girders shall be proportioned such that they can be erected without bridging (See Section 1004.9 for bracing required for uplift forces). Therefore, the following requirements shall be met: - a) The ends of the bottom chord are restrained from lateral movement to brace the girder from overturning. For Joist Girders at columns in steel frames, restraint shall be provided by a stabilizer plate on the column. - b) No other loads shall be placed on the Joist Girder until the steel joists bearing on the girder are in place and welded to the girder. #### 1004.6 BEARING SEAT ATTACHMENTS ## (a) Masonry and Concrete Ends of Joist Girders resting on steel bearing plates on masonry or structural concrete shall be attached thereto with a minimum of two 1/4 inch (6 millimeters) fillet welds 2 inches (51 millimeters) long, or with two 3/4 inch (19 millmeters) ASTM - A307 bolts (minimum), or the equivalent. #### (b) Steel Ends of Joist Girders resting on steel supports shall be attached thereto with a minimum of two 1/4 inch (6 millimeters) fillet welds 2 inches (51 millimeters) long, or with two 3/4 inch (19 millimeters) ASTM - A307 bolts, or the equivalent. In steel frames, bearing seats for Joist Girders shall be fabricated to allow for field bolting. #### (c) Uplift Where uplift forces are a design consideration, roof Joist Girders shall be anchored to resist such forces (Refer to Section 1004.9). #### 1004.7 DEFLECTION The deflections due to the design live load shall not exceed the following: Floors: 1/360 of span. Roofs: 1/360 of span where a plaster ceiling is attached or suspended. 1/240 of span for all other cases. The **specifying professional** shall give consideration to the effects of deflection and vibration* in the selection of Joist Girders. *For further reference, refer to Steel Joist Institute Technical Digest 5, "Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. #### **1004.8 PONDING** The ponding investigation shall be performed by the specifying professional. *For further reference, refer to Steel Joist Institute Technical Digest 3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and AISC Specification for Structural Steel Buildings. #### 1004.9 UPLIFT Where uplift forces due to wind are a design requirement, these forces shall be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract drawings shall indicate if the net uplift is based on ASD or LRFD. When these forces are specified, they shall be considered in the design of Joist Girders and/or bracing. If the ends of the bottom chord are not strutted, bracing shall be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration. *For further reference, refer to Steel Joist Institute Technical Digest 6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads." #### **1004.10 INSPECTION** Joist Girders shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of this specification. If the purchaser wishes an inspection of the Joist Girders by someone other than the manufacturer's own inspectors, they may reserve the right to do so in their "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the Joist Girders at the manufacturing shop by the purchaser's inspectors at purchaser's expense. # SECTION 1005. # HANDLING AND ERECTION* Particular attention shall be paid to the erection of Joist Girders. Care shall be exercised at all times to avoid damage through careless handling during unloading, storing and erecting. Dropping of Joist Girders shall not be permitted. In steel framing, where Joist Girders are utilized at column lines, the Joist Girder shall be field-bolted at the column. Before hoisting cables are released and before an employee is allowed on the Joist Girder the following conditions shall be met: a) The seat at each end of the Joist Girder is attached in accordance with Section 1004.6. When a bolted seat connection is used for erection purposes, as a minimum, the bolts shall be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This shall be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. b) Where stabilizer plates are required the Joist Girder bottom chord shall engage the stabilizer plate. During the construction period, the contractor shall provide means for the adequate distribution of loads so that the carrying capacity of any Joist Girder is not exceeded. Joist Girders shall not be used as anchorage points for a fall arrest system unless written direction to do so is obtained from a "qualified person". (1) Field welding shall not damage the Joist Girder. The total length of weld at any one cross-section on cold formed members whose yield strength has been attained by cold working and whose as-formed strength is used in the design, shall not exceed 50 percent of the overall developed width of the cold-formed section. *For a thorough coverage of this topic, refer to SJI Technical Digest 9, "Handling and Erection of Steel Joists and Joist Girders." (1) See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. for definition of "qualified person". ## **DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY** Based on a 50ksi maximum yield strength | Girder | Joist | Girder |--------|--------------|--------------|----------|----------|----------|----------|----------|----------|-----------|------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Span | Spaces | Depth | | | | | | | | 0010 | | | | | | | | oui i (| - | | | | | | | (ft) | (ft) | (in)
LRFD | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | 15K | 16.5K | 18K | 21K | 24K | 27K | 20V | 37.5K | 45K | 52.5K | 60K | 75K | 90K | 105K | 120K | 150K | | | | ASD | 4K | 7.5K | 6K | 7K | 8K | 9K | 10K | 10.5K | 12K | 14K | 16K | 18K | 20K | | 30K | 35K | 40K | 50K | 60K | 70K | 80K | 100K | | | | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 18 | 21 | 23 | 26 | 30 | 35 | 41 | 47 | 54 | 69 | 83 | 100 | 108 | 140 | | | 2N@ | 20 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 19 | 22 | 24 | 31 | 35 | 39 | 44
37 | 56
48 | 64
57 | 76
66 | 85
73 | 104
88 | | | 10.00 | 24
16 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 16
18 | 17
20 | 17
22 | 17
24 | 17
27 | 17
31 | 19
35 | 20
38 | 26
48 | 29
54 | 34
69 | 79 | 101 | 114 | 141 | 152 | 187 | | | 3N@ | 20 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 19 | 21 | 23 | 26 | 28 | 31 | 38 | 47 | 56 | 64 | 78 | 95 | 109 | 117 | 156 | | | 6.67 | 24
16 | 16
16 | 16
16 | 17
18 | 17
20 | 17
22 | 17
26 | 17
28 | 18
29 | 19
32 | 23
38 | 25
42 | 26
50 | 31
54 | 34
66 | 38
83 | 45
100 | 51
108 | 67
140 | 80
162 | 97
188 | 109 | 122
314 | | 20 | 4N@ | 20 | 16 | 16 | 16 | 17 | 20 | 20 | 21 | 23 | 26 | 30 | 34 | 39 | 43 | 52 | 60 | 76 | 85 | 105 | 124 | 145 | 169 | 238 | | | 5.00 | 24 | 16 | 16 | 16 | 16 | 17 | 19 | 20 | 21 | 22 | 25 | 28 | 32 | 38 | 44 | 54 | 61 | 75 | 89 | 107 | 126 | 149 | 189 | | | 5N@ | 16
20 | 16
16 | 18
16 | 19
17 | 24
19 | 26
21 | 29
26 | 33
28 | 37
29 | 39
32 | 47
37 | 54
41 | 59
49 | 66
53 | 83
65 | 101
80 | 113
95 | 140
104 | 172
134 | | 247
198 | 296
221 | 296 | | | 4.00 | 24 | 16 | 16 | 17 | 19 | 20 | 22 | 24 | 28 | 28 | 31 | 35 | 39 | 45 | 55 | 67 | 78 | 88 | | 128 | 152 | 183 | 244 | | | 10N@ | 16
20 | 28
23 | 33
29 | 39
31 | 47
37 | 54
43 | 62
49 | 72
56 | 78
61 | 83
64 | 101
77 | 109
86 | 131
104 | 141
108 | 195
145 | 226
179 | 247
203 | 358
236 | 317 | | | | | | | 2.00 | 24 | 21 | 25 | 28 | 32 | 39 | 43 | 46 | 55 | 54 | 66 | 80 | 84 | 89 | | 141 | 171 | 197 | 250 | 313 | | | | | | an e | 16 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 20 | 20 | 23 | 26 | 29 | 32 | 39 | 46 | 53 | 61 | 77 | 98 | 107 | 119 | 158 | | | 2N@
11 | 20
24 | 18
19 19
19 | 19
19 | 20
19 | 21
20 | 23
21 | 27
24 | 33
29 | 37 | 46
36 | 48
42 | 62
49 | 70
63 | 83
72 | 101 | 121
103 | | | | 16 | 15 | 15 | 15 | 16 | 17 | 19 | 23 | 24 | 25 | 29 | 33 | 37 | 40 | 53 | 61 | 73 | 90 | 103 | 129 | 149 | 170 | 207 | | | 3N@
7.33 | 20
24 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 17
16 | 19
17 | 20
18 | 23
19 | 24
24 | 27
24 | 30
27 | 34
28 | 42
36 | 48
43 | 55
48 | 67
57 | 80
70 | 102
82 | 115
97 | 132
111 | 165
137 | | | 7100 | 16 | 16 | 17 | 18 | 21 | 24 | 28 | 30 | 33 | 36 | 40 | 46 | 53 | 58 | 77 | 98 | 100 | 119 | | 179 | 206 | 235 | 107 | | 22 | 4N@
5.5 | 20
24 | 16
16 | 16
16 | 17
16 | 18
17 | 20
19 | 22
20 | 25
20 | 27
21 | 28
26 | 33
27 | 37
31 | 42
34 | 48
40 | 60
47 | 71
61 | 84
69 | 102 | 115 | 143 | 165 | 187 | 244
206 | | | 5.5 | 16 | 17 | 21 | 26 | 29 | 35 | 39 | 42 | 49 | 50 | 58 | 73 | 82 | 99 | 107 | 139 | 160 | 76
180 | 104
237 | 113 | 145 | 148 | 200 | | | 6N@ | 20 | 17 | 19 | 21 | 26 | 28 | 31 | 34 | 38 | 42 | 51 | 59 | 60 | 68 | l |
103 | 122 | 143 | 175 | | 252 | 322 | | | | 3.67 | 24
16 | 16
32 | 17
39 | 19
49 | 21
57 | 25
64 | 27
77 | 30
82 | 32
99 | 34
100 | 113 | 47
140 | 54
150 | 61
162 | 75
222 | 87
256 | 106 | 113 | 148 | 1/8 | 202 | 240 | 330 | | | 11N@ | 20 | 26 | 31 | 37 | 43 | 52 | 59 | 64 | 76 | 80 | 94 | 103 | 116 | 133 | 168 | 203 | 235 | 289 | | | | | | | | 2.00 | 24 | 24
18 | 28
18 | 32
18 | 38
18 | 43
18 | 50
18 | 54
18 | 62
19 | 65
19 | 78
21 | 90 | 108
27 | 110 | 138
36 | 182
44 | 205
47 | 238
54 | 301
68 | 78 | 99 | 103 | 131 | | | 2N@ | 24 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 20 | 21 | 22 | 26 | 32 | 34 | 40 | 46 | 55 | 67 | 79 | 93 | 106 | | | 12.00 | 28 | 19
16 | 19
16 | 19
16 | 19
16 | 19
16 | 19
18 | 19 | 19
22 | 19
23 | 19 | 20 | 21 | 23
36 | 28
45 | 32
54 | 35
62 | 41
74 | 48
92 | 57 | 69 | 72
151 | 95 | | | 3N@ | 24 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 19 | 21 | 24 | 27 | 29 | 31 | 38 | 47 | 55 | 64 | 78 | 105
94 | 130
108 | 117 | 175
156 | | | 8.00 | 28 | 16 | 16 | 16 | 16 | 17 | 17 | 17 | 18 | 18 | 24 | 26 | 26 | 30 | 35 | 40 | 48 | 55 | 67 | 86 | 97 | 108 | 122 | | | 4N@ | 20
24 | 16
17 | 16
17 | 17
17 | 19
18 | 21
19 | 25
22 | 27
24 | 28
25 | 31
28 | 36
32 | 39
35 | 47
38 | 50
43 | 63
54 | 78
65 | 100
76 | 101
85 | 130
107 | 161
124 | 183
147 | 192
168 | 246
225 | | | 6.00 | 28 | 16 | 16 | 16 | 16 | 17 | 20 | 20 | 21 | 25 | 27 | 30 | 3 6 | 38 | 44 | 53 | 62 | 74 | 88 | 108 | 126 | 149 | 187 | | 24 | 5N@ | 20
24 | 16
16 | 17
16 | 20
18 | 22
20 | 25
21 | 28
26 | 31
28 | 35
29 | 36
32 | 43
36 | 51
41 | 55
49 | 62
53 | 78
65 | 100
80 | 105
94 | 131
104 | 164
134 | | 225
186 | 282
218 | 285 | | | 4.8 | 28 | 16 | 16 | 17 | 19 | 20 | 22 | 25 | 27 | 29 | 32 | 36 | 42 | 46 | 58 | 66 | 82 | 97 | | 138 | 168 | 180 | 231 | | | 6N@ | 20
24 | 17
16 | 20
17 | 23
20 | 27
23 | 30
26 | 33
29 | 38
32 | 41
34 | 44
38 | 51 | 59
53 | 69
60 | 74
61 | 101 | 109
103 | 141
106 | | 192 | | 294 | 267 | | | | 4.00 | 28 | 17 | 17 | 20 | 22 | 25 | 28 | 29 | 31 | 33 | 43
39 | 44 | 49 | 55 | 76
76 | | 106 | 124
112 | | | 232
202 | 240 | 289 | | | 1010 | 20 | 29 | 38 | 45 | 51 | 59 | 70 | 75 | 84 | 101 | 1 | | 143 | 166 | | | 320 | | | | | | | | | 12N@
2.00 | 24
28 | 27
25 | 31
29 | 38
33 | 45
40 | 53
45 | 61
54 | 62
56 | 7 2
69 | 77
71 | 87
79 | | 113
113 | 114 | 175
144 | | 249
215 | 288
234 | 305 | | | | | | | | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 23 | 24 | 24 | 26 | 27 | 29 | 32 | 37 | 45 | 53 | 60 | 68 | 90 | 99 | 112 | l | | | 2N@
13.00 | 24
28 | 23
23 | 23
23 | 23
23 | 23
23 | 23
23 | 23 | 23
23 | 23
23 | 24
23 | 25
24 | 25
25 | 27
26 | 29
27 | 32
31 | 38
34 | 44
39 | 51
45 | 61
52 | 70
62 | 83
71 | 101
81 | 115
103 | | | | 20 | 15 | 15 | 16 | 16 | 17 | 19 | 22 | 23 | 25 | 28 | 33 | 36 | 39 | 50 | 57 | 68 | 78 | 99 | 113 | 140 | 151 | 196 | | | 3N@
8.67 | 24
28 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 17
17 | 19
17 | 21
19 | 23
20 | 25
25 | 28
25 | 31
28 | 34
29 | 40
38 | 51
45 | 58
48 | 67
56 | 80
69 | 102
81 | 113
97 | 132
110 | | | | | 20 | 16 | 16 | 18 | 21 | 24 | 27 | 28 | 30 | 33 | 39 | 42 | 50 | 54 | 69 | 82 | 100 | | | | 186 | 213 | | | | 4N@ | 24 | 16 | 16 | 17 | 18 | 20 | 23 | 25 | 27 | 28 | 33 | 37 | 40
35 | 48 | 60
50 | l | 79 | 101 | 110 | 143 | | 188 | | | 26 | 6.5 | 28 | 16
17 | 16
18 | 16
21 | 17
25 | 19
28 | 20
31 | 20
35 | 22
39 | 26
40 | 29
48 | 32
54 | 35
62 | 39
69 | 50
91 | 60
100 | 69
114 | | | 112
200 | 145
239 | 149
275 | ∠∪4 | | | 5N@ | 24 | 16 | 16 | 19 | 21 | 24 | 27 | 28 | 31 | 34 | 38 | 43 | 51 | 55 | 71 | 84 | 103 | 108 | 143 | 166 | 201 | 225 | 310 | | | 5.2 | 28 | 16
20 | 16
24 | 17
28 | 19
33 | 21
36 | 23
42 | 27
47 | 28
54 | 29
58 | 34
65 | 39
78 | 43
91 | 50
100 | 61
119 | 80
140 | 86
162 | | 118
238 | 147
308 | 1/8 | 200 | 249 | | | 7N@ | 24 | 17 | 20 | 26 | 28 | 31 | 35 | 40 | 44 | 49 | 56 | 64 | 71 | 80 | 103 | 116 | 143 | 166 | 198 | 242 | | | | | | 3.71 | 28
20 | 17
42 | 20
50 | 22
58 | 27
70 | 29
86 | 32
91 | 35
103 | 38
109 | 42
110 | 50
131 | 58
152 | 62
173 | 70
202 | | 106 | 114 | 137 | 178 | 212 | 253 | 292 | | | | 13N@ | 24 | 35 | 43 | 50 | 62 | 66 | 76 | 88 | 93 | 97 | 112 | 127 | 154 | 166 | 225 | | | | | | | | | | P . | 2.00 | 28 | 32 | 40 | 48 | 55 | 64 | 68 | 74 | 90 | | | | | | 177 | | 283 | | | | | | | | Bearin | g Depth | | | | | | | | 7 1/2 i | n. | | | | | | | | | | 10 i | n. | | | | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. # DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY Based on a 50ksi maximum yield strength | | on a 50 | | IXIIIIL | JIII YIE | eiu Si | rengu | · | | - 1. | -: | ·:la. | . \A/-: | l A | Davis | ada F |) - u ! | | F4 | | | | | | | |----------------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Girder
Span | Joist
Spaces | Girder | | | | | | | J | DIST C | | | | | | | | Foot | | | | | | | | (ft) | (ft) | (in) | | | | | | | | | | Jau C | III ⊑a | CIIP | anen | Point | | | | | | | | | | | | LRFD | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | | 16.5K | | 21K | 24K | 27K | | 37.5K | 45K | 52.5K | 60K | 75K | 90K | 105K | 120K | 150K | | | | ASD | 4K | 5K | 6K | 7K | 8K | 9K | 10K | 11K | 12K | 14K | 16K | 18K | 20K | 25K | 30K | 35K | 40K | 50K | 60K | 70K | 80K | 100K | | | 2N@ | 24
28 | 29
29 | 29
29 | 29
30 | 29
30 | 29
30 | 29
30 | 29
30 | 30
30 | 31
30 | 31
31 | 33
32 | 34
34 | 37
34 | 39
38 | 42
40 | 49
43 | 57
46 | 65
58 | 77
66 | 91
78 | 103
93 | 129
106 | | | 14.00 | 32 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 31 | 32 | 33 | 34 | 37 | 39 | 40 | 44 | 52 | 60 | 68 | 76 | 95 | | | | 24 | 16 | 16 | 16 | 16 | 16 | 18 | 21 | 22 | 23 | 26 | 29 | 33 | 36 | 44 | 54 | 61 | 70 | 91 | 105 | 124 | 133 | 174 | | | 3N@ | 28 | 16 | 16 | 16 | 16 | 16 | 16 | 18 | 19 | 21 | 23 | 26 | 29 | 31 | 39 | 47 | 52 | 61 | 77 | 94 | 107 | 115 | 156 | | | 9.33 | 32 | 16
16 | 16
16 | 16
17 | 16
19 | 17
21 | 17
24 | 17
27 | 18
28 | 19
31 | 24
35 | 24
39 | 27
45 | 29
50 | 36
62 | 42
74 | 47
91 | 54
101 | 70
121 | 80
143 | 97
165 | 110 | 131
244 | | | 4N@ | 28 | 17 | 17 | 17 | 18 | 20 | 23 | 24 | 25 | 28 | 32 | 36 | 39 | 44 | 57 | 64 | 76 | 85 | 109 | 124 | 151 | 170 | 206 | | | 7.00 | 32 | 16 | 16 | 16 | 18 | 19 | 20 | 21 | 22 | 24 | 27 | 31 | 37 | 39 | 46 | 54 | 62 | 74 | 88 | 108 | 126 | 149 | 185 | | | | 24 | 16 | 17 | 19 | 22 | 24 | 28 | 31 | 33 | 35 | 41 | 47 | 55 | 62 | 78 | 92 | 105 | 114 | 152 | 176 | 215 | 244 | 200 | | 28 | 5N@
5.6 | 28
32 | 16
16 | 16
16 | 17
17 | 20
19 | 21
20 | 26
22 | 28
26 | 29
27 | 32
29 | 35
32 | 40
38 | 47
42 | 52
46 | 64
58 | 80
66 | 94
82 | 104
97 | 134
111 | 136 | 186
162 | 213
190 | 260
232 | | | 3.0 | 24 | 17 | 19 | 21 | 25 | 29 | 32 | 36 | 39 | 43 | 50 | 59 | 66 | 73 | 100 | 109 | 121 | | 191 | 219 | 254 | 314 | 202 | | | 6N@ | 28 | 16 | 19 | 21 | 22 | 26 | 29 | 32 | 34 | 37 | 44 | 52 | 57 | 60 | 76 | 103 | 105 | 123 | 149 | 194 | 223 | 253 | | | | 4.67 | 32 | 17 | 17 | 20 | 22 | 24 | 27 | 30 | 31 | 34 | 38 | 45 | 51 | 54 | 71 | 87 | 105 | 108 | 148 | 177 | 201 | 230 | 301 | | | 7N@ | 24
28 | 18
17 | 22
20 | 26
24 | 31
26 | 33
29 | 37
32 | 43
36 | 48
41 | 51
45 | 59
53 | 67
61 | 79
65 | 84
74 | 103
95 | 131
109 | 144
125 | 166
147 | 219
184 | 261
224 | 272 | 312 | | | | 4.00 | 32 | 17 | 20 | 23 | 25 | 27 | 30 | 33 | 37 | 40 | 47 | 55 | 60 | 67 | 83 | 106 | 115 | 127 | | 202 | 240 | 277 | | | | | 24 | 33 | 43 | 51 | 59 | 66 | 79 | 84 | 102 | 103 | 121 | 143 | 155 | 173 | 221 | 281 | | 005 | | | | | | | | 14N@
2.00 | 28
32 | 30
28 | 38
33 | 45
40 | 53
47 | 61
54 | 70
63 | 75
72 | 82
76 | 88
79 | 106
100 | 114
113 | 137
118 | 149
132 | 198
172 | 235
206 | 274
244 | 332
284 | | | | | | | | 2.00 | 24 | 29 | 29 | 29 | 29 | 29 | 29 | 30 | 30 | 31 | 32 | 33 | 35 | 37 | 40 | 46 | 53 | 60 | 72 | 85 | 102 | 103 | 139 | | | 2N@ | 28 | 29 | 29 | 29 | 29 | 29 | 30 | 30 | 30 | 30 | 32 | 32 | 34 | 36 | 38 | 41 | 44 | 49 | 65 | 74 | 86 | 92 | 115 | | | 15.00 | 32 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 31 | 32 | 33 | 34 | 37 | 40 | 41 | 45 | 55 | 66 | 75 | 89 | 106 | | | | 36
24 | 30
15 | 30
16 | 30
16 | 30
16 | 30
18 | 30
19 | 30
22 | 30
24 | 30
25 | 31
29 | 32
31 | 32
34 | 33 | 36
48 | 38
57 | 41
65 | 42
74 | 51
91 | 60
109 | 68
130 | 76
151 | 95
176 | | | 3N@ | 28 | 16 | 16 | 16 | 16 | 16 | 17 | 20 | 21 | 24 | 25 | 28 | 31 | 33 | 43 | 50 | 58 | 67 | 79 | 94 | 108 | 126 | 156 | | | 10.00 | 32 | 16 | 16 | 16 | 16 | 16 | 17 | 18 | 19 | 21 | 25 | 26 | 29 | 30 | 38 | 45 | 51 | 60 | 69 | 89 | 96 | 110 | 136 | | | | 36 | 16 | 17 | 17 | 17 | 17 | 17 | 17 | 18 | 20
32 | 24 | 26 | 27 | 30 | 34
66 | 42 | 46 | 55 | 70 | 80 | 92 |
99 | 122
265 | | | 4N@ 28
7.5 32 | 24
28 | 16
16 | 16
16 | 17
17 | 20
18 | 24
21 | 26
23 | 27
25 | 30
27 | 28 | 37
33 | 42
37 | 47
42 | 54
46 | 56 | 78
71 | 99
79 | 104
93 | 140
110 | 161
143 | 183
156 | 210
179 | 223 | | | | 32 | 16 | 16 | 16 | 18 | 19 | 20 | 21 | 23 | 27 | 29 | 32 | 36 | 41 | 50 | 60 | 69 | 76 | 104 | 112 | 146 | 149 | 202 | | | | 36 | 16 | 16 | 17 | 17 | 18 | 19 | 21 | 22 | 24 | 27 | 30 | 35 | 38 | 45 | 54 | 62 | 71 | 87 | 106 | 115 | 147 | 184 | | | 5N@ | 24
28 | 16
16 | 17
16 | 20
19 | 23
21 | 26
24 | 29
27 | 32
28 | 34
31 | 38
34 | 45
38 | 53
46 | 58
49 | 62
56 | 78
71 | 100
79 | 108
102 | 131
107 | 162
143 | 193 | 231
195 | 262
224 | 285 | | 30 | 6.00 | 32 | 16 | 16 | 17 | 19 | 21 | 25 | 26 | 28 | 31 | 36 | 39 | 44 | 50 | 64 | 73 | 85 | 104 | | | 177 | 198 | 248 | | | | 36 | 16 | 17 | 17 | 19 | 21 | 22 | 25 | 27 | 29 | 31 | 38 | 40 | 44 | 58 | 66 | 76 | 88 | 108 | 127 | 151 | 179 | 220 | | | CN@ | 24 | 17 | 19 | 24 | 28 | 31 | 34 | 39 | 42 | 47 | 54 | 62 | 69 | 78
67 | 100 | 109 | 140 | 161 | • | 237 | 288 | 200 | | | | 6N@
5.00 | 28
32 | 16
16 | 19
17 | 20
20 | 26
22 | 28
26 | 31
28 | 34
31 | 37
32 | 40
35 | 46
41 | 52
47 | 60
53 | 67
60 | 84
74 | 102
87 | 111
106 | 143
113 | | 195
175 | 222
200 | 289
237 | 304 | | | 0.00 | 36 | 17 | 18 | 19 | 21 | 24 | 28 | 28 | 30 | 33 | 38 | 44 | 49 | 55 | 67 | 79 | 90 | | | 154 | 180 | 206 | 275 | | | ••• | 24 | 21 | 25 | 31 | 36 | 41 | 47 | 50 | 58 | 62 | 73 | 83 | 100 | 102 | 131 | 162 | 188 | 216 | 255 | | | | | | | 8N@
3.75 | 28
32 | 20
19 | 23
22 | 29
26 | 32
30 | 37
32 | 40
36 | 44
41 | 49
45 | 53
50 | 61
57 | 72
65 | 81
75 | 86
82 | 111
105 | 144
114 | 147 | 175 | 224 | 281 | 000 | 040 | | | | 3.73 | 36 | 19 | 21 | 24 | 28 | 30 | 35 | 38 | 39 | 43 | 53 | 59 | 69 | 74 | 89 | 111 | 147
118 | 159
152 | 204
185 | 242
218 | 308
256 | 343
314 | | | | | 24 | 40 | 50 | 58 | 66 | 78 | 92 | 101 | 106 | 115 | 142 | 165 | 181 | 196 | 257 | 326 | | | | | | <u> </u> | | | | 15N@ | 28 | 34 | 41 | 52 | 60 | 68 | 76 | 85 | 103 | 105 | | 137 | | 176 | 216 | | 329 | 205 | | | | | | | | 2.00 | 32
36 | 30
29 | 39
35 | 47
42 | 54
49 | 62
56 | 73
66 | 77
72 | 83
79 | 91
82 | 111
103 | 11 <i>7</i>
117 | 133
127 | 159
142 | 195
183 | 222 | 275
260 | 325
290 | | | | | | | | | 24 | 15 | 15 | 15 | 17 | 19 | 21 | 23 | 25 | 26 | 31 | 34 | 37 | 42 | 50 | 63 | 72 | 86 | | 123 | 130 | 150 | 197 | | | 3N@ | 28 | 16 | 16 | 16 | 16 | 17 | 19 | 21 | 22 | 24 | 27 | 29 | 32 | 35 | 44 | 51 | 64 | 67 | 87 | 105 | 114 | 132 | 173 | | | 10.67 | 32
36 | 16
16 | 16
16 | 16
17 | 16 | 16
17 | 17
17 | 19
18 | 21
19 | 22
21 | 25
25 | 27
25 | 30
28 | 32
30 | 39
37 | 45
44 | 52
51 | 60
54 | 77
69 | 93
79 | 107
97 | 115
110 | 156
131 | | | | 24 | 16 | 16 | 18 | 22 | 24 | 26 | 29 | 31 | 34 | 40 | 45 | 53 | 58 | 69 | 89 | 99 | 107 | 139 | | 187 | 222 | 273 | | | 4N@ | 28 | 16 | 16 | 17 | 19 | 22 | 24 | 26 | 27 | 30 | 35 | 38 | 46 | 48 | 62 | 70 | 83 | 101 | 115 | 143 | 165 | 187 | 243 | | | 8.00 | 32 | 17 | 17 | 17 | 18 | 20 | 24 | 25 | 25 | 28 | 32 | 36 | 39 | 46 | 56
50 | 65
57 | 73
66 | | 109 | | | 172 | 203 | | | | 36 | 16
16 | 16
19 | 18
22 | 18
26 | 19
29 | 20
31 | 22
34 | 23
38 | 26
41 | 28
47 | 34
54 | 37
61 | 39
68 | 50
91 | 57
103 | 66
113 | 75
140 | 88
172 | 107
200 | | 149
275 | 184 | | | 5N@ | 28 | 16 | 17 | 19 | 22 | 24 | 27 | 29 | 32 | 35 | 41 | 47 | 54 | 62 | 71 | 92 | 102 | 114 | 143 | 175 | 209 | 233 | 305 | | 32 | 6.4 | 32 | 16 | 16 | 18 | 20 | 22 | 26 | 27 | 30 | 33 | 36 | 42 | 47 | 55 | 64 | 80 | 94 | 103 | 133 | 156 | 187 | 203 | 258 | | | | 36
24 | 16
18 | 17
21 | 17
25 | 19
29 | 20
33 | 23
36 | 25
40 | 28
46 | 29
49 | 35
57 | 37
65 | 43
73 | 48
82 | 58
100 | 72
119 | 82
141 | 96
161 | 111
214 | 137 | 162
307 | 189 | 230 | | | 6N@ | 28 | 17 | 19 | 21 | 26 | 28 | 31 | 36 | 39 | 43 | 50 | 59 | 62 | 70 | | 102 | 121 | | 171 | | | 290 | | | | 5.33 | 32 | 16 | 19 | 20 | 24 | 26 | 28 | 32 | 34 | 37 | 44 | 52 | 57 | 60 | 76 | 103 | 105 | 123 | 149 | 194 | 223 | 253 | 321 | | | | 36 | 17 | 17 | 20 | 21 | 25 | 27 | 30 | 32 | 35 | 39 | 46 | 51 | 57 | 74 | | | | 148 | 176 | 200 | 229 | 299 | | | 8N@ | 24
28 | 23
21 | 28
26 | 33
28 | 39
33 | 42
37 | 50
42 | 57
48 | 58
51 | 65
59 | 77
67 | 91
75 | 100
85 | 108
101 | | 162
143 | 188
167 | 216
192 | 282
241 | 292 | | | | | | 4.00 | 32 | 20 | 23 | 27 | 30 | 34 | 38 | 42 | 46 | 52 | 61 | 69 | 76 | 86 | | 125 | 149 | 176 | 207 | 258 | 304 | | | | | | 36 | 19 | 22 | 26 | 29 | 32 | 36 | 39 | 43 | 46 | 54 | 62 | 74 | 76 | | 116 | | | 195 | | | 316 | | | Bea | ring De | pth | | | | | | | | 7 1/2 | in. | | | | | | | | | | 10 i | n. | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. # DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY Based on a 50ksi maximum yield strength | Girder
Span | Joist
Spaces | Girder | | | | | | | Jo | oist G | | · Weig | | | | | | Foot | | | | | | | |----------------|-----------------|----------|----------|----------|----------|----------|----------|----------------|----------|----------------|----------|----------|------------------|-----------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------| | (ft) | (ft) | (in) | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | 15K | 16.5K | | 21K | 24K | 27K | | 37.5K | | 52.5K | 60K | 75K | 90K | 105K | 120K | 150K | | | | ASD | 4K | 5K | 6K | 7K | 8K | 9K | 10K | 11K | 12K | 14K | 16K | 18K | 20K | 25K | 30K | 35K | 40K | 50K | 60K | 70K | 80K | 100K | | | 3N@
11.33 | 32
36 | 18
18 | 18
19 | 18
19 | 19
19 | 19
19 | 19
19 | 20
20 | 22
20 | 23
22 | 26
26 | 28
27 | 32
29 | 35
31 | 42
39 | 49
45 | 58
51 | 66
60 | 87
73 | 91
89 | 112
99 | 126
115 | 156
136 | | | | 40
28 | 19
16 | 19
16 | 19
18 | 19
20 | 19
23 | 19
26 | 20
27 | 20 | 21
32 | 25
36 | 27
40 | 28
47 | 32
54 | 37
62 | 44
78 | 46
91 | 54
100 | 70
130 | 79
152 | 92
174 | 110 | 132
243 | | | 4N@ | 32 | 16 | 16 | 17 | 19 | 20 | 24 | 24 | 27 | 30 | 32 | 37 | 42 | 47 | 56 | 71 | 79 | 92 | 108 | 134 | 155 | 177 | 223 | | | 8.50 | 36
40 | 16
16 | 17
18 | 18
18 | 18
18 | 19
19 | 21
20 | 23
21 | 26
23 | 27
26 | 29
28 | 33
33 | 38
35 | 41
39 | 50
45 | 61
54 | 69
62 | 76
74 | 104
87 | | 115 | 149
148 | 200
182 | | 34 | 5N@ | 28
32 | 16
16 | 17
17 | 21
18 | 23
21 | 26
24 | 29
27 | 32
30 | 35
32 | 38
34 | 45
39 | 47
46 | 54
48 | 62
55 | 77
70 | 99
79 | 106
101 | 120
107 | 153
133 | 185
1 56 | 212
197 | 248
214 | 267 | | | 6.80 | 36
40 | 16
17 | 16
17 | 17
18 | 20
19 | 21
21 | 25
23 | 28
26 | 28
29 | 33
29 | 36
35 | 39
38 | 47
40 | 50
48 | 64
58 | 73
66 | 85
80 | | 119
111 | 146
137 | 170
151 | | 241
227 | | | 6N@ | 28
32 | 17
17 | 20
19 | 24
21 | 28
25 | 30
28 | 33
31 | 36
34 | 41
37 | 44
40 | 54
48 | 58
52 | 65
59 | 73
67 | 100
83 | 108
102 | 130
110 | | 190 | 220
193 | 248 | 307
252 | | | | 5.67 | 36 | 17 | 18 | 20 | 22 | 26 | 28 | 31 | 32 | 36 | 41 | 50 | 53 | 60 | 74 | 86 | 105 | 113 | 148
128 | 177 | 199 | 228 | 298
269 | | | | 28 | 17
19 | 18
23 | 19
27 | 22
31 | 34 | 39 | 29
43 | 30
47 | 33
54 | 39
62 | 70 | 51
78 | 54
91 | 67
105 | 131 | 97
152 | 175 | 219 | 255 | | 210 | 209 | | | 7N@
4.86 | 32
36 | 18
17 | 20
20 | 26
22 | 27
27 | 31
29 | 35
32 | 38
36 | 42
38 | 47
42 | 56
50 | 64
57 | 71
65 | 79
69 | | 111
105 | 134
118 | 136 | 193
176 | 223
203 | | 285 | | | | | 40
28 | 17
25 | 20
28 | 23
34 | 25
39 | 28
43 | 30
51 | 33
58 | 36
63 | 39
67 | 45
78 | 53
92 | 59
101 | 63
109 | 79
142 | 99
164 | 109
194 | 220 | | 196 | 225 | 258 | 332 | | | 9N@
3.78 | 32
36 | 21
20 | 26
25 | 30
28 | 35
32 | 40
36 | 44
41 | 49
45 | 56
50 | 60
53 | 70
62 | 80
72 | 95
81 | 103
88 | 124
113 | | 175
150 | | 265
227 | 325
275 | 330 | | | | | | 40 | 19
18 | 23
18 | 28
18 | 30
18 | 34
19 | 38
21 | 43
23 | 46
25 | 51
27 | 59
30 | 68
33 | 76
40 | 84
41 | 107 | 116 | 142
69 | | 206
94 | 250
109 | 299
130 | 151 | 186 | | | 3N@ | 32 | 18 | 18 | 18 | 18 | 18 | 19 | 21
20 | 23
21 | 25
22 | 27
26 | 30
28 | 33 | 36 | 44
43 | 54 | 61
55 | 71
63 | 87 | 104 | 112 | 132 | 164 | | | 12.00 | 36
40 | 18
19 | 18
19 | 19
19 | 19
19 | 19
19 | 19
19 | 19 | 20 | 22 | 26 | 26 | 29 | 34
32 | 40 | 48
44 | 51 | 57 | 76
69 | 89 | 97 | 110 | 156
131 | | | 4N@ | 28
32 | 16
16 | 16
16 | 19
17 | 21
20 | 23
23 | 27
24 | 29
26 | 31
28 | 34
31 | 39
35 | 45
40 | 50
46 | 54
48 | 69
62 | 81
70 | 99 | 104
101 | 115 | | 165 | | 265
230 | | | 9.00 | 36
40 | 17
16 | 17
18 | 17
18 | 18
18 | 21
19 | 24
21 | 25
23 | 27
23 | 28
26 | 33
28 |
37
32 | 40
38 | 46
40 | 57
50 | 65
58 | 73
66 | 85
76 | 96 | 125
111 | 126 | 149 | 212
183 | | | 5N@ | 28
32 | 16
16 | 18
17 | 21
20 | 25
22 | 26
24 | 31
27 | 34
30 | 36
34 | 40
35 | 45
41 | 54
46 | 61
54 | 68
59 | 81
70 | 100
91 | 114
101 | | 162
143 | 196
177 | 231
199 | 262
233 | 300 | | | 7.20 | 36
40 | 16
17 | 16
17 | 18
17 | 21
20 | 23
21 | 26
24 | 28
26 | 30
28 | 33
31 | 37
36 | 42
39 | 47
43 | 55
49 | 63
57 | 79
73 | 93
81 | 104
95 | 133
111 | 156
137 | 186
162 | | 258
230 | | 36 | 6N@ | 28
32 | 18
17 | 20
20 | 25
23 | 27
25 | 33
28 | 36
31 | 39
35 | 42
39 | 47
42 | 57
48 | 62
55 | 69
62 | 77
70 | 99 | 113
102 | 140
121 | 160 | | 236
199 | 282 | 285 | | | | 6.00 | 36 | 16 | 18 | 21 | 24 | 26 | 29 | 32 | 36 | 37 | 44 | 52 | 56 | 63 | 80 | 102 | 106 | 123 | 147
148 | 193
177 | 214 | 252 | 317
296 | | | | 28 | 17
19 | 18
24 | 20
28 | 33 | 26
37 | 2 7 | 30
47 | 33
50 | 35
54 | 41
62 | 46
77 | 53
82 | 58
99 | 71
113 | 86
140 | 105
162 | 188 | 225 | 291 | | 220 | 290 | | | 7N@
5.14 | 32
36 | 18
18 | 21
20 | 26
25 | 28
28 | 32
31 | 37
33 | 40
36 | 43
41 | 49
44 | 56
53 | 64
5 7 | 71
65 | 80
73 | 94 | 116
109 | 143
125 | 147 | | 246
213 | 256 | 306 | | | | | 40
28 | 17
24 | 20
31 | 24
36 | 26
41 | 29
46 | 31
54 | 34
57 | 37
65 | 41
69 | 49
82 | 55
99 | 62
104 | 66
113 | 82
141 | 106
173 | 113
205 | 236 | | 200 | 231 | 274 | | | | 9N@
4.00 | 32
36 | 23
21 | 27
26 | 31
29 | 37
33 | 40
37 | 48
41 | 52
50 | 59
52 | 63
56 | 73
65 | 84
74 | 102
85 | 103
95 | 133
113 | | 185
160 | 215
187 | 268
236 | 298 | | | | | | | 40
32 | 20
22 | 24
23 | 27
23 | 30
23 | 35
23 | 39 | 43
25 | 46
26 | 51
26 | 62
29 | 68
33 | 76
36 | 87
40 | 107
47 | | 151
65 | | 207
91 | 270
109 | | 142 | 173 | | | 3N@
12.67 | 36
40 | 23
23 | 23
23 | 23
23 | 23
23 | 23
24 | 24
24 | 25
24 | 26 | 26
26 | 27
29 | 28
28 | 32
31 | 36
33 | 43
43 | 50
48 | 61
55 | 67
63 | 85
73 | 97
89 | 112 | | 156 | | | 72.07 | 44 | 23
16 | 24
16 | 24
18 | 24
21 | 24 | 24 | 24 | 25
25
30 | 26
32 | 28 | 29
41 | 29
46 | 33
54 | 39
62 | 44
78 | 50
91 | 58
100 | 70 | 88
152 | 96 | 110
190 | 131 | | | 4N@ | 36 | 16 | 17 | 17 | 19 | 23 | 24 | 26 | 26 | 29 | 34 | 38 | 42 | 47 | 56 | 71 | 79 | 93 | 108 | 134 | 155 | 177 | 223 | | | 9.50 | 40
44 | 17
18 | 17
18 | 18
18 | 18
18 | 20
19 | 23
21 | 24
23 | 26
24 | 28
27 | 31
29 | 35
34 | 38
36 | 41
39 | 51
48 | 61
58 | 72
66 | 74 | 88 | 113
106 | 121 | 149
148 | | | | 5N@ | 32
36 | 16
16 | 17
17 | 20
18 | 23
22 | 26
24 | 29
27 | 32
29 | 35
31 | 37
34 | 44
38 | 47
46 | 55
49 | 62
56 | 77
71 | 91
79 | 105
93 | 107 | | 177
158 | 184 | 233
213 | | | | 7.60 | 40
44 | 16
17 | 16
17 | 17
18 | 20
20 | 22
21 | 25
23 | 28
26 | 30
28 | 33
30 | 37
35 | 41
39 | 47
42 | 50
49 | 63
57 | 74
69 | 93
81 | | 118
111 | 147
137 | | 197
188 | | | 38 | 6N@ | 32
36 | 17
17 | 20
19 | 23
21 | 27
26 | 31
28 | 34
32 | 36
34 | 39
37 | 43
40 | 51
48 | 58
52 | 65
59 | 73
64 | 99 | 106
102 | 121
110 | 142 | 189 | 218
192 | 251 | 305 | | | | 6.33 | 40
44 | 17
17 | 18
18 | 20
20 | 23
22 | 26
26 | 29
28 | 32
30 | 33
33 | 36
34 | 42
39 | 50
46 | 56
51 | 61
58 | 73
70 | 86
82 | 105
97 | 113 | 148
127 | 176
163 | 199 | 228 | | | | ONI® | 32 | 20 | 26 | 30 | 35 | 39 | 43 | 49 | 55 | 59 | 67 | 79 | 92 | 101 | 121 | 143 | 167 | 191 | 239 | 309 | | <u> </u> | <u> </u> | | | 8N@
4.75 | 36
40 | 20
20 | 24
25 | 28
28 | 32
31 | 36
34 | 41
37 | 44
43 | 50
48 | 53
51 | 61
58 | 69
66 | 81
74 | | 106
106 | 115 | 147
139 | 168 | 202 | 258
240 | 292 | | | | | | 32 | 19
27 | 23
32 | 27
38 | 29
45 | 32
48 | 36
55 | 39
62 | 43
70 | 49
78 | | 60
102 | 72
107 | 76
121 | 155 | | 123
212 | 260 | 184 | 222 | 272 | 309 | | | | 10N@
3.80 | 36
40 | 25
23 | 30
28 | 35
33 | 39
37 | 47
42 | 49
48 | 56
50 | 64
57 | 71
64 | 79
76 | 93
81 | 103
95 | 108
106 | 145
120 | 173
150 | 196
176 | 214
203 | 282
264 | 314 | | | | | Rearin | | 44 | 22 | 26 | 31 | 35 | 38 | 44 | 49 | 53
2 in. | 58 | 67 | 76 | 83 | 97 | 113 | 139 | 168 | | 239 | | | | | | Dearin | g Depth | | | | | | | | 1 1/ | ۷ III. | | | | | | | | | | - 1 | v III. | | | | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. ## **DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY** Based on a 50ksi maximum yield strength | Girder
Span | Joist
Spaces | Girder
Depth | | | | | | | Jo | oist C | | r Weig | | | | | | Foot | | | | | | | |----------------|-----------------|-----------------|----------|------------|----------|-------------|----------------|-------------|--------------------|---------------------|------------|------------|------------|------------|------------|--------------|------------|--------------|------------|------------------|--------------|-------------|--------------------|--------------| | (ft) | (ft) | (in) | LRFD
ASD | 6K
4K | 7.5K
5K | 9K
6K | 10.5K
7K | 12K
8K | 13.5K
9K | 15K
10K | 16.5K
11K | 18K
12K | 21K
14K | 24K
16K | 27K
18K | 30K
20K | 37.5K
25K | 45K
30K | 52.5K
35K | 60K
40K | 75K
50K | 90K
60K | 105K
70K | 120K
80K | 150K
100K | | | | 32 | 22 | 23 | 23 | 23 | 24 | 24 | 25 | 26 | 27 | 30 | 34 | 38 | 40 | 51 | 60 | 69 | 81 | 94 | 108 | 124 | 150 | 185 | | | 3N@ | 36
40 | 23
23 | 23
23 | 23
23 | 23
23 | 23
23 | 24
23 | 25
24 | 25
25 | 27
27 | 27
27 | 32
28 | 34
32 | 39
35 | 46
43 | 54
49 | 61
55 | 70
62 | 87
84 | | 111
107 | 126
125 | 164
156 | | | 13.33 | 44 | 23 | 23 | 23 | 24 | 24 | 24 | 24 | 26 | 26 | 28 | 28 | 32 | 33 | 42 | 47 | 55 | 63 | 73 | 89 | 99 | 115 | 131 | | | | 48
32 | 23
16 | 24
16 | 24
19 | 24 | 24
25 | 24
26 | 24
28 | 26
30 | 26
33 | 29
39 | 29
45 | 29
50 | 32
53 | 38
68 | 44
77 | 51
90 | 57
104 | 70
129 | 80
152 | 92
173 | 102 | 131
252 | | | 4N@ | 36 | 16 | 17 | 18 | 21 | 25 | 25 | 26 | 29 | 31 | 34 | 40 | 44 | 48 | 62 | 71 | 79 | 93 | 115 | 143 | 166 | 179 | 230 | | | 4N@
10.00 | 40
44 | 17
16 | 17
16 | 17
18 | 19
18 | 23
20 | 25
21 | 26
23 | 27
24 | 29
28 | 32 | 38
34 | 41
37 | 46
40 | 56
51 | 68
57 | 77
66 | 93
76 | | 119 | | 172
150 | 212
189 | | | | 48
32 | 17
16 | 17
18 | 18
22 | 18
25 | 19
28 | 20
31 | 23
34 | 25
37 | 26
40 | 28
46 | 32
54 | 34
58 | 37
65 | 49
78 | 58
100 | 66
106 | 74
130 | <u>87</u>
157 | 108
188 | | 139
255 | 178 | | | | 36 | 16 | 17 | 20 | 23 | 25 | 27 | 31 | 34 | 35 | 41 | 46 | 54 | 59 | 71 | 91 | 102 | 107 | 143 | 167 | 196 | 230 | 298 | | | 5N@
8.00 | 40
44 | 16
17 | 16
17 | 18
17 | 21
20 | 23
23 | 27
24 | 28
28 | 30
29 | 33
31 | 37
35 | 42
39 | 47
46 | 53
49 | 64
60 | 80
73 | 93
81 | | 128
116 | 159
138 | | 210
186 | 262
245 | | | 0.00 | 48 | 17 | 17 | 17 | 19 | 23 | 25 | 25 | 28 | 29 | 33 | 37 | 41 | 47 | 57 | 67 | 80 | 93 | 111 | 122 | 152 | 178 | 217 | | | | 32
36 | 17
17 | 20
20 | 24
23 | 28
26 | 32
28 | 35
31 | 39
35 | 42
38 | 47
41 | 54
48 | 62
55 | 69
62 | 77
70 | 99
83 | 108
102 | 140
115 | 151
142 | 189
167 | 220
197 | | 275 | | | 40 | 6N@ | 40 | 17 | 18 | 21 | 25
22 | 28
27 | 29 | 32
30 | 36
33 | 38 | 44 | 49 | 56 | 64 | 79
74 | 94 | 105 | 118 | | 185 | | 245 | 313 | | | 6.67 | 44
48 | 17
17 | 18
18 | 21
20 | 24 | 25 | 29
28 | 29 | 31 | 36
33 | 42
40 | 49
44 | 53
52 | 58
55 | 72 | 86
79 | 105
98 | 111
108 | 130 | 177
156 | | 227
204 | 294
271 | | | | 32
36 | 19
18 | 24
21 | 28
26 | 32
28 | 34
32 | 40
35 | 45
40 | 47
43 | 54
48 | 62
56 | 70
63 | 77
71 | 91
79 | 105
102 | 130
115 | 152
143 | 175
155 | 218 | 255
232 | 076 | | | | | 7N@ | 40 | 18 | 20 | 25 | 28 | 31 | 33 | 36 | 41 | 45 | 51 | 57 | 65 | 72 | 94 | 108 | 118 | 145 | 184 | 214 | 255 | 300 | | | | 5.71 | 44
48 | 18
18 | 21
22 | 23
24 | 27
27 | 29
30 | 31
33 | 34
37 | 37
39 | 41
42 | 50
48 | 58
57 | 63
63 | 67
71 | 82 | 106 | 113
114 | 127
125 | | 199 | 237
234 | 272
267 | | | | | 32 | 21 | 27 | 31 | 36 | 39 | 47 | 50 | 58 | 62 | 70 | 83 | 100 | 101 | 121 | 152 | 175 | 197 | 241 | | 201 | 201 | | | | 8N@ | 36
40 | 21
20 | 25
23 | 29
27 | 32
30 | 37
35 | 40
38 | 48
41 | 51
46 | 56
51 | 64 | 72
69 | 84
76 | 93
86 | 111 | 144
119 | 156
148 | 182
171 | 222 | 277
257 | 294 | | | | | 5.00 | 44 | 20 | 24
24 | 29
26 | 30
29 | 34
32 | 38
35 | 41
40 | 45
43 | 50
46 | 58
55 | 66
60 | 75
72 | 78
76 | | 113 | 129 | 153 | 193
183 | 240 | 278 | 320 | | | |
 48
32 | 19
27 | 33 | 40 | 43 | 51 | 58 | 63 | 70 | 78 | 92 | 103 | 110 | 122 | 168 | 111
190 | 118
218 | 246 | 100 | 210 | <u> 201</u> | 295 | | | | 10N@ | 36
40 | 27
25 | 30
28 | 35
33 | 41
39 | 48
43 | 55
50 | 62
56 | 64
57 | 72
65 | 79
74 | 94
86 | 107
95 | 116
109 | 145
134 | 181
160 | 199
186 | 240
212 | 306
277 | | | | | | | 4.00 | 44 | 23 | 28 | 31 | 37 | 40 | 48 | 51 | 57 | 59 | 74 | 81 | 88 | 98 | 120 | 150 | 175 | 190 | 255 | | | | | | | | 48
32 | 22
29 | 26
29 | 29
29 | 34 | 38
31 | 42
31 | 50
32 | 54
33 | 59
34 | 67
35 | 76
38 | 83
40 | 98 | 114
53 | 140
60 | 157
69 | 182
81 | 230
94 | | 324
140 | 160 | 185 | | | 3N@ | 36
40 | 29
30 | 29
30 | 30
30 | 30
30 | 30
30 | 31
30 | 32
31 | 34
34 | 33
34 | 35
34 | 36
35 | 38
37 | 40
39 | 47
46 | 57
53 | 64
61 | 70 | 87 | 109 | 122 | 141 | 173 | | | 14.00 | 44 | 30 | 30 | 30 | 30 | 30 | 30 | 32 | 32 | 33 | 35 | 35 | 36 | 37 | 43 | 48 | 56 | 71
63 | 85
73 | 89 | 112
99 | 126
115 | 156
146 | | | | 48
32 | 30
16 | 30
17 | 30
20 | 30
23 | 31
25 | 31
28 | 32 | 32 | 33
35 | 35
42 | 35
45 | 36
50 | 39
57 | 43
68 | 48
89 | 53
99 | 61
104 | 74
140 | 88
161 | 99
186 | 110
214 | 132
274 | | | | 36 | 16 | 16 | 18 | 21 | 23 | 25 | 28 | 30 | 33 | 37 | 44 | 46 | 52 | 66 | 75 | 91 | 101 | 115 | 143 | 175 | 191 | 240 | | | 4N@
10.50 | 40
44 | 17
17 | 17
17 | 18
18 | 21
19 | 22
21 | 24
25 | 26
25 | 28
27 | 30
29 | 34 | 38
36 | 45
42 | 47
46 | 59
54 | 68
65 | 79
74 | 94
82 | 109
106 | 134
120 | | 177
164 | 214
202 | | | | 48
32 | 18 | 18
20 | 18
23 | 18
26 | 20
28 | 25
33 | 27
36 | 25
39 | 28
44 | 31
47 | 35
54 | 39
61 | 43 | 50 | 63
103 | 71
113 | 81 | 98 | 114 | 139 | 153 | 192 | | | | 36 | 17
16 | 17 | 21 | 23 | 26 | 28 | 32 | 34 | 37 | 44 | 48 | 54 | 68
62 | 90
74 | 91 | 105 | 130
115 | 172
152 | | 225
207 | 256
233 | | | | 5N@
8.40 | 40
44 | 16
16 | 18
18 | 20
19 | 22
21 | 24
25 | 27
26 | 29
28 | 32
30 | 34
32 | 40
38 | 45
41 | 52
47 | 55
53 | 67
64 | 79
77 | 93
93 | | 133
119 | | | 210
200 | 266
238 | | | 0.40 | 48 | 17 | 18 | 18 | 20 | 24 | 24 | 27 | 29 | 30 | 36 | 39 | 43 | 49 | 57 | 70 | 81 | 96 | 111 | 137 | 162 | 187 | 220 | | | | 32
36 | 18
17 | 21
20 | 26
24 | 29
27 | 33
30 | 37
34 | 40
36 | 45
39 | 47
43 | 57
51 | 65
58 | 73
62 | 81
70 | 99
91 | 119
106 | 140
121 | 160
142 | 190
177 | 236 | 289
240 | 293 | | | 42 | 6N@ | 40 | 17 | 19 | 21 | 26 | 28 | 32 | 34 | 36
34 | 40 | 47 | 55 | 59
57 | 64 | 79 | 103 | 109 | 123 | 167 | 192 | 222 | 253 | 000 | | | 7.00 | 44
48 | 17
17 | 18
18 | 21
21 | 24
24 | 26
26
37 | 29
29 | 32
30 | 33 | 36
35 | 43
41 | 50
46 | 52 | 60
58 | 76
70 | 83 | 105
106 | 113 | 148
139 | 176
163 | 202
188 | 22 <i>7</i>
208 | 303
270 | | | | 32
36 | 20
20 | 24
23 | 29
27 | 34
30 | 37
35 | 42
38 | 47
41 | 53
46 | 54
51 | 68
59 | 77
70 | 90
78 | 99
83 | 113
102 | | 162
142 | 187 | 226
205 | 289 | | | | | | 7N@ | 40 | 18 | 22 | 25 | 28 | 32 | 35 | 39 | 42 | 47 | 56 | 63 | 71 | 79 | 95 | 109 | 134 | 147 | 182 | 222 | 272 | 303 | | | | 6.00 | 44 48 | 18
18 | 21
20 | 24
24 | 27
26 | 30
29 | 32
32 | 36
34 | 40
37 | 43
41 | 51
47 | 57
52 | 65
59 | 73
67 | 83 | 106
98 | 113 | 137
122 | 176
164 | 202
191 | 246
220 | 283
255 | | | | | 32 | 22 | 28 | 33 | 38 | 43 | 47 | 54 | 58 | 65 | 77 | 83 | 100 | 105 | 140 | 163 | 188 | 216 | 268 | | | | | | | 8N@ | 36
40 | 20
20 | 26
24 | 29
28 | 34
33 | 40
36 | 43
41 | 49
45 | 55
50 | 59
53 | 67
61 | 79
69 | 84
81 | | 107 | | 151 | 175 | 231
215 | 264 | 326 | | | | | 5.25 | 44
48 | 21
21 | 23
25 | 28
28 | 31
29 | 34
32 | 37
35 | 43
39 | 47
44 | 52
48 | 58
56 | 66
64 | 79
69 | 83 | 107
100 | 116 | | 157 | 201
182 | 239 | 291 | | | | | | 32 | 31 | 37 | 45 | 53 | 61 | 69 | 77 | 82 | 91 | 104 | 114 | 130 | 151 | 189 | 218 | 267 | | 102 | <u> </u> | <u> </u> | 010 | | | | 11N@ | 36
40 | 27
27 | 35
32 | 41
37 | 48
42 | 55
49 | 62
56 | 70
64 | 72
65 | 79
73 | | | | | 166
149 | | 232
209 | 270
243 | 310 | | | | | | | 3.82 | 44 | 25 | 31 | 35 | 40 | 48 | 51 | 58 | 65 | 66 | 81 | 95 | 106 | 111 | 139 | 167 | 190 | 218 | 281 | 040 | | | | | Bearin | g Depth | 48 | 24 | 29 | 34 | 38 | 45 | 50 | 54
7 1 / | 60
2 in . | 67 | 76 | 84 | 98 | 108 | 122 | 154 | 180 | 205 | 259
10 | 318
) in. | | | | | | g Dopui | | | | | | | | , | | | | | | | | | | | | | | | | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. # DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY Based on a 50ksi maximum yield strength | Daseu | on a 50 | JKSI IIIa | IXIIIIL | IIII yie | eia st | rengu | 1 | | | | | | | | | | | | | | | | | | |----------------|--------------------------|-----------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|------------|------------|---------------|------------|---------------|------------|------------|------------|------------|------------|-------------| | Girder
Span | Joist
Spaces | Girder
Depth | | | | | | | Jo | oist G | | | | | nds F | | | Foot | | | | | | | | (ft) | (ft) | (in) | | | | | | | | | L | oad c | n Ea | cn P | anel I | oint | | | | | | | | | | | | LRFD | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | | 16.5K | | 21K | 24K | 27K | | 37.5K | | 52.5K | 60K | 75K | 90K | 105K | 120K | | | | | ASD
36 | 4K
30 | 5K
30 | 6K
30 | 7K
30 | 8K
31 | 9K
31 | 10K
32 | 11K
34 | 12K
35 | 14K
36 | 16K
38 | 18K
39 | 20K
44 | 25K 52 | 30K
60 | 35K 69 | 40K
81 | 50K
95 | 60K
120 | 70K
134 | 80K
151 | 100K
187 | | | | 40 | 30 | 30 | 30 | 30 | 31 | 31 | 32 | 33 | 35 | 35 | 37 | 38 | 39 | 51 | 59 | 62 | 70 | 88 | 110 | | | 166 | | | 3N@ | 44 | 30 | 30 | 30 | 31 | 31 | 31 | 32 | 33 | 34 | 34 | 36 | 37 | 38 | 46 | 53 | 59 | 67 | 85 | 98 | | | 157 | | | 15.00 | 48
54 | 30
30 | 30
30 | 30
30 | 31
32 | 31
32 | 31
32 | 32
32 | 32
32 | 33 | 36
36 | 36
36 | 38
37 | 37
39 | 41
41 | 48
48 | 58
53 | 63
60 | 82
71 | 90
89 | - 1 | 117
104 | 148
132 | | | | 36 | 18 | 19 | 20 | 23 | 25 | 27 | 29 | 31 | 34 | 42 | 43 | 50 | 57 | 65 | 77 | 90 | 104 | | 152 | 174 | 199 | 252 | | | | 40 | 19 | 19 | 20 | 21 | 24 | 25 | 28 | 30 | 32 | 37 | 43 | 46 | 51 | 65 | 75 | 87 | 101 | 115 | 143 | | | 230 | | | 4N@
11.25 | 44
48 | 19
19 | 19
20 | 20
20 | 21
21 | 23
22 | 26
25 | 26
25 | 28
26 | 30
29 | 34
32 | 40
35 | 44
40 | 47
42 | 59
54 | 68
64 | 76
73 | 93
81 | 109
104 | 134
114 | 156
136 | | 211
198 | | | 11.23 | 54 | 20 | 20 | 20 | 21 | 22 | 24 | 25 | 26 | 27 | 30 | 33 | 38 | 41 | 50 | 58 | 66 | 74 | 97 | 108 | 116 | | 176 | | | | 36 | 16 | 18 | 23 | 25 | 28 | 30 | 33 | 36 | 39 | 46 | 54 | 58 | 65 | 78 | 99 | 110 | 131 | 152 | 194 | | 254 | 005 | | | 5N@ | 40
44 | 16
16 | 18
17 | 21
20 | 23
23 | 26
24 | 28
27 | 31
29 | 34
32 | 37
34 | 44
39 | 46
45 | 54
48 | 58
56 | 75
67 | 91
79 | 105
94 | 107 | 143
133 | 176
156 | 206
182 | | 295
265 | | | 9.00 | 48 | 17 | 18 | 19 | 24 | 25 | 26 | 28 | 30 | 32 | 37 | 41 | 46 | 53 | 64 | 78 | 89 | 96 | 118 | 148 | 162 | 186 | 238 | | | | 54
36 | 17
17 | 18
22 | 18
24 | 21
29 | 24
32 | 26
35 | 26
39 | 29
43 | 31
47 | 33
54 | 40
62 | 43
69 | 47
78 | 58
99 | 70
109 | 79
140 | | 112
189 | 131
217 | 153
261 | 166 | 217 | | | | 40 | 17 | 20 | 24 | 27 | 30 | 33 | 35 | 38 | 42 | 49 | 55 | 62 | 71 | 92 | 109 | 116 | | 168 | 196 | | 281 | | | 45 | 6N@ | 44 | 17 | 19 | 23 | 26 | 28 | 31 | 33 | 36 | 39 | 47 | 52 | 56 | 64 | 80 | 103 | 109 | | 159 | 192 | 222 | 250 | | | | 7.50 | 48
54 | 17
17 | 19
18 | 22
21 | 24
24 | 27
25 | 29
28 | 31
30 | 34
33 | 37
35 | 43
38 | 50
45 | 57
52 | 61
55 | 74
68 | 87
83 | 105
98 | | 148
128 | 175
155 | | 227
202 | 295
266 | | | | 36 | 20 | 24 | 28 | 32 | 36 | 40 | 46 | 47 | 54 | 62 | 70 | 77 | 91 | 105 | 130 | 152 | 175 | | 255 | 170 | _0_ | _00 | | | 7N@ | 40 | 19 | 22 | 27 | 30 | 34 | 38 | 41 | 46 | 49 | 56 | 63 | 71 | 79 | 102 | 116 | 143 | | 196 | 231 | 290 | 000 | | | | 7N@
6.43 | 44
48 | 18
18 | 22
21 | 25
24 | 28
27 | 31
29 | 36
33 | 39
37 | 42
40 | 47
43 | 56
50 | 63
57 | 65
65 | 72
73 | 94`
82 | 109
105 | 123
119 | | 182
175 | 213
201 | | 299
278 | | | | 0 | 54 | 24 | 24 | 26 | 30 | 32 | 35 | 39 | 41 | 45 | 49 | 57 | 63 | 72 | 83 | 100 | 114 | 125 | 165 | 195 | | 263 | | | | | 36
40 | 25
22 | 30
28 | 35
32 | 39
37 | 47
42 | 54
48 | 58
52 | 63
56 | 70
64 | 78
72 | 92
84 | 101
93 | 109
103 | 141
123 | 164
156 | 194
179 | 226
197 | 282 | | | | | | | 9N@ | 44 | 23 | 28 | 31 | 36 | 39 | 45 | 50 | 53 | 57 | 66 | 76 | 86 | 130 | 113 | 146 | 175 | | 244 | 295 | | | | | | 5.00 | 48 | 22 | 26 | 29 | 34 | 37 | 41 | 46 | 51 | 54 | 63 | 74 | 81 | 88 | 109 | 129 | 152 | 177 | 226 | 269 | 313 | | | | | | 54
36 | 21
32 | 24
39 |
28
48 | 31
55 | 35
62 | 39
70 | 43
78 | 46
83 | 51
100 | 60
106 | 69
121 | 76
142 | 84
155 | 108
191 | 116
225 | 144
272 | 159 | 193 | 243 | 280 | 321 | | | | | 40 | 30 | 35 | 42 | 49 | 56 | 64 | 71 | 79 | 84 | 103 | 108 | 123 | 145 | 171 | 198 | 246 | 294 | | | | | | | | 12N@ | 44 | 28
27 | 33
31 | 40
37 | 48 | 53
52 | 57
58 | 65
63 | 74 | 81 | 95 | 105
97 | 111 | 125 | 163 | 196 | 216 | 264 | 201 | | | | | | | 3.75 | 48
54 | 25 | 30 | 36 | 43
40 | 5∠
47 | 52 | 58 | 68
62 | 75
73 | 83
79 | 86 | 108
101 | 116
112 | 153
133 | 179
158 | 201
184 | 240
218 | 274 | 333 | | | | | | | 36 | 18 | 19 | 21 | 24 | 26 | 29 | 31 | 34 | 37 | 43 | 48 | 56 | 57 | 73 | 89 | 102 | | 139 | 171 | 195 | | 273 | | | 4N@ | 40
44 | 19
19 | 19
19 | 20
20 | 22
21 | 24
25 | 27
27 | 29
29 | 32
30 | 35
32 | 41
36 | 44
43 | 49
45 | 57
50 | 65
63 | 77
75 | 91
87 | 104
93 | 130
113 | 152
134 | 174
155 | | 253
231 | | | 12.00 | 48 | 19 | 20 | 20 | 20 | 24 | 27 | 27 | 30 | 31 | 33 | 40 | 44 | 46 | 60 | 68 | 77 | 89 | 109 | 129 | | 172 | | | | | 54 | 20 | 20 | 21 | 21 | 24 | 25 | 26 | 26 | 29 | 32 | 37 | 41 | 43 | 49 | 61 | 70 | 79 | 97 | 112 | | 149 | 188 | | | | 36
40 | 17
17 | 21
19 | 24
24 | 27
25 | 30
27 | 33
31 | 36
33 | 39
37 | 44
39 | 50
44 | 57
51 | 64
57 | 68
65 | 90
77 | 103
91 | 113
106 | 130
125 | 171
153 | 197
177 | | 266
234 | | | | 5N@ | 44 | 17 | 18 | 23 | 25 | 26 | 29 | 31 | 34 | 36 | 43 | 47 | 52 | 59 | 71 | 87 | 101 | 107 | 133 | 156 | 195 | 222 | | | | 9.60 | 48
54 | 17
18 | 17
18 | 22
21 | 24
22 | 24
24 | 27
26 | 30
28 | 32
30 | 35
32 | 39
37 | 45
41 | 47
46 | 53
49 | 67
61 | 78
70 | 90
81 | 108 | 128 | 157
137 | 184 | 207 | 266
220 | | | | 36 | 18 | 23 | 26 | 30 | 34 | 37 | 40 | 45 | 50 | 61 | 68 | 76 | 81 | | 119 | 140 | 160 | 201 | 236 | 288 | | 223 | | | CNIC | 40 | 17 | 22 | 24 | 27 | 32 | 35 | 38 | 41 | 46 | 54 | 62 | 69 | 77
71 | 92 | 106 | 130 | 143 | 176 | 218 | 250 | 292 | | | | 6N@
8.00 | 44
48 | 17
17 | 20
20 | 24
24 | 27
25 | 30
28 | 33 | 36
34 | 39
36 | 42
39 | 48
47 | 55
50 | 63
57 | 71
64 | 84
80 | 103
94 | 111
108 | 132 | 168
148 | 195
182 | 231 | 265
251 | 313 | | | | 54 | 17 | 20 | 22 | 24 | 27 | 29 | 32 | 35 | 38 | 40 | 49 | 52 | 58 | 74 | 83 | 106 | 111 | 139 | 163 | | | | | 48 | | 36
40 | 24
21 | 28
27 | 33
31 | 39
35 | 43
40 | 50
46 | 54
49 | 61
55 | 65
59 | 77
71 | 91
79 | 100
92 | 105
101 | 140 | 163
143 | 188
167 | 216 | 278
246 | 300 | | | | | | 8N@ | 44 | 21 | 27 | 29 | 33 | 37 | 41 | 47 | 50 | 56 | 64 | 72 | 81 | 94 | 109 | 135 | 159 | 174 | 223 | 280 | | | | | | 6.00 | 48 | 21 | 24 | 29 | 32 | 36 | 39 | 43 | 49 | 51 | 61 | 67 | 76 | 82 | 107 | 120 | 150 | 175 | 203 | 249 | | 04.4 | | | | | 54
36 | 23
27 | 26
31 | 28
37 | 33
42 | 37
47 | 40
54 | 43
61 | 49
69 | 51
70 | 59
91 | 67
99 | 75
105 | 81
114 | 98
151 | | 130
206 | 154
237 | | 229 | 268 | 314 | | | | | 40 | 24 | 29 | 35 | 38 | 43 | 49 | 55 | 63 | 67 | 78 | 92 | 101 | 107 | 142 | 165 | 191 | 219 | 266 | | | | | | | 9N@ | 44 | 25 | 28 | 33 | 36 | 42 | 48 | 52
40 | 57
53 | 64
57 | 73
66 | 80
74 | 94 | | | 147 | | | 235 | | | | | | | 5.33 | 48
54 | 23
23 | 28
26 | 31
29 | 35
33 | 40
37 | 43
41 | 49
45 | 53
50 | 57
52 | 66
60 | 74
68 | 82
76 | | 111
108 | | 161
153 | | 235
204 | 284
254 | 301 | | | | | | 36 | 34 | 41 | 50 | 58 | 68 | 76 | 82 | 91 | 100 | 109 | 130 | 142 | 164 | 192 | 243 | 294 | | | | | | | | | 12N@ | 40
44 | 32
30 | 38
35 | 46
42 | 55
50 | 62
56 | 70
64 | 74
71 | 79
73 | 92
81 | | | 132
117 | 144
134 | 180 | 219
198 | 258 | 301
276 | 288 | | | | | | | 4.00 | 48 | 29 | 34 | 40 | 46 | 51 | 57 | 66 | 72 | 75 | | | | 120 | 151 | 187 | 215 | 248 | 318 | | | | | | Do and | | 54 | 27 | 32 | 38 | 42 | 51 | 54 | 61 | 68 | 73 | 84 | | | 114 | | | | | 288 | 0 : | | | | | Bearin | g Depth 7 1/2 in. 10 in. | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. ### **DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY** Based on a 50ksi maximum yield strength | Girder
Span | | Girder
Depth | | | | | | | Jo | oist C | | | | | nds F
anel I | | | Foot | | | | | | | |----------------|--------------|----------------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|---------------------|------------------|---------------|------------|------------|------------|------|------------|-------------| | (ft) | (ft) | (in) | | | | | | | | | | | | , | | | | | | | | | | | | | | LRFD | 6K | 7.5K | 9K | 10.5K | | 13.5K | 15K | 16.5K | | 21K | 24K | 27K | | 37.5K | 45K | 52.5K | 60K | 75K | 90K | 105K | 120K | | | | | ASD
40 | 4K
23 | 5K
24 | 6K
24 | 7K
27 | 8K
27 | 9K
28 | 10K
31 | 11K
33 | 12K
36 | 14K
42 | 16K
44 | 18K
50 | 20K
56 | 25K 65 | 30K
85 | 35K 90 | 40K
104 | 50K
130 | 60K | 70K | 80K
199 | 100K
252 | | | | 40 | 23 | 24 | 24 | 26 | 28 | 28 | 29 | 31 | 34 | 38 | 43 | 49 | 51 | 66 | 74 | 87 | 104 | 115 | 152
153 | 173 | 1 4 | 230 | | | 4N@ | 48 | 23 | 24 | 24 | 26 | 28 | 28 | 29 | 30 | 32 | 36 | 42 | 44 | 50 | 60 | 68 | 79 | 93 | 108 | | 156 | | 213 | | | 12.50 | 54 | 23
27 | 27 | 27 | 28 | 28 | 28 | 28 | 30 | 31 | 33 | 38 | 42 | 45 | 55 | 62 | 73 | 82 | 106 | l . | | 159 | 197 | | | 12.50 | 60 | 27 | 28 | 28 | 28 | 28 | 29 | 29 | 30 | 31 | 32 | 36 | 40 | 43 | 51 | 59 | 69 | 76 | 97 | 113 | | 138 | 178 | | ŀ | | 40 | 17 | 21 | 24 | 25 | 29 | 32 | 35 | 38 | 42 | 46 | 54 | 58 | 65 | 86 | 100 | 110 | 125 | 152 | 184 | 219 | _ | 170 | | | | 44 | 16 | 19 | 23 | 24 | 28 | 30 | 33 | 36 | 39 | 44 | 50 | 54 | 58 | 75 | 91 | 105 | | 152 | | | 230 | 294 | | | 5N@ | 48 | 17 | 19 | 22 | 25 | 25 | 29 | 31 | 33 | 36 | 40 | 46 | 53 | 59 | 68 | 88 | 94 | 107 | 134 | | | 209 | 269 | | | 10.00 | 54 | 18 | 18 | 21 | 24 | 26 | 27 | 30 | 31 | 33 | 38 | 42 | 46 | 52 | 61 | 78 | 90 | | 117 | 138 | | 184 | 238 | | | | 60 | 18 | 20 | 20 | 22 | 25 | 27 | 28 | 31 | 31 | 35 | 41 | 46 | 48 | 62 | 70 | 79 | 93 | 112 | | | | 217 | | İ | | 40 | 18 | 22 | 26 | 29 | 32 | 36 | 41 | 46 | 47 | 54 | 62 | 70 | 78 | 100 | 109 | 131 | 151 | | _ | 260 | | | | | | 44 | 17 | 22 | 24 | 27 | 30 | 34 | 37 | 40 | 46 | 49 | 55 | 63 | 71 | 92 | 106 | 116 | | 168 | | 246 | 281 | | | | 6N@ | 48 | 17 | 22 | 23 | 26 | 28 | 32 | 35 | 38 | 39 | 47 | 56 | 63 | 65 | 80 | 103 | 109 | | 159 | | 222 | | | | | 8.33 | 54 | 18 | 20 | 23 | 25 | 29 | 29 | 32 | 35 | 37 | 43 | 49 | 57 | 58 | 73 | 87 | 105 | 112 | | l . | | 226 | 293 | | | | 60 | 18 | 21 | 22 | 25 | 27 | 31 | 31 | 33 | 35 | 41 | 45 | 51 | 59 | 68 | 83 | 98 | | 129 | | | 205 | | | 50 | | 40 | 23 | 27 | 31 | 37 | 41 | 48 | 54 | 55 | 62 | 71 | 83 | 92 | 102 | 122 | 153 | 176 | 195 | | | | | | | | | 44 | 22 | 27 | 31 | 34 | 39 | 44 | 49 | 52 | 56 | 65 | 75 | 84 | 102 | 111 | 144 | 167 | 182 | 222 | | | | | | | 8N@ | 48 | 22 | 25 | 29 | 33 | 37 | 40 | 45 | 50 | 53 | 61 | 73 | 81 | 86 | 107 | 126 | 149 | 175 | 214 | 263 | 310 | | | | | 6.25 | 54 | 25 | 26 | 31 | 34 | 37 | 41 | 46 | 48 | 51 | 58 | 70 | 76 | 83 | 106 | 114 | 141 | | 193 | | 283 | 1 | | | | | 60 | 24 | 25 | 28 | 32 | 35 | 39 | 42 | 47 | 49 | 57 | 64 | 72 | 77 | 99 | 115 | 125 | _ | 178 | 215 | 258 | 291 | | | | | 40 | 28 | 33 | 41 | 46 | 55 | 62 | 66 | 74 | 78 | 92 | 105 | 115 | 131 | 156 | 193 | 229 | 267 | | | | | | | | | 44 | 27 | 32 | 37 | 44 | 49 | 56 | 63 | 67 | 72 | 88 | 102 | 107 | 116 | 155 | 180 | 208 | 239 | | | | | | | | 10N@ | 48 | 27 | 32 | 35 | 41 | 48 | 54 | 57 | 64 | 68 | 80 | 94 | 103 | 109 | | 160 | 186 | | | | | | | | | 5.00 | 54 | 26 | 29 | 33 | 40 | 43 | 50 | 55 | 58 | 62 | 74 | 82 | 96 | 106 | | 152 | 173 | 188 | | 306 | | | | | | | 60 | 25 | 28 | 32 | 38 | 41 | 45 | 51 | 54 | 58 | 68 | 77 | 84 | 98 | 114 | 142 | 167 | 180 | 225 | 275 | 317 | | | | | | 40 | 35 | 41 | 51 | 59 | 67 | 74 | 83 | 92 | 102 | 111 | 132 | 144 | 169 | 196 | 252 | 303 | | | | | | | | | 40010 | 44 | 32 | 39 | 48 | 56 | 61 | 69 | 75 | 85 | 95 | 105 | 117 | 134 | 148 | - | 228 | 260 | 313 | | | | | | | | 13N@ | 48 | 30 | 36 | 44 | 51 | 57 | 66 | 74 | 77 | 87 | 105 | 111 | | 138 | 174 | 200 | 248 | 288 | 000 | | | | | | | 3.85 | 54 | 29 | 34 | 40 | 48 | 53 | 60 | 68 | 74 | 78 | 90 | 108 | 114 | 125 | 157 | 191 | 216 | 256 | | | | | | | | | 60
44 | 28
19 | 33
22 | 40
25 | 45
27 | 50
30 | 57
32 | 64
35 | 71
38 | 73
43 | 83 | 94 | 113 | 115 | 148 | 174 | 216 | 235 | | 400 | 010 | 050 | - | | | | 44 | - | 21 | 25
24 | 27
25 | 29 | 30 | 33 | | 39 | 49
45 | 50 | 61
58 | 66 | 85
75 | 95
91 | 111 | 125 | | | 219 | 230 | | | | 5N@ | 40
54 | 19
20 | 21 | 23 | 25
25 | 26 | 29 | 31 | 36
34 | 36 | 43 | 46 | 52 | 62
60 | 67 | 88 | 106
94 | 108 | 153 | 177
158 | | 207 | 265 | | | 11.00 | 60 | 20 | 22 | 22 | 24 | 27 | 27 | 31 | 32 | 34 | 39 | 45 | 47 | 53 | 64 | 77 | 90 | 97 | 116 | | | 185 | 237 | | | 11.00 | 66 | 21 | 22 | 23 | 24 | 26 | 28 | 29 | 32 | 33 | 37 | 42 | 46 | 49 | 62 | 71 | 80 | 93 | 112 | | | | 217 | | ŀ | | 44 | 18 | 23 | 26 | 29 | 33 | 37 | 40 | 46 | 47 | 54 | 62 | 70 | 77 | 100 | 114 | 131 | 151 | | | 261 | 170 | 217 | | | | 48 | 18 | 23 | 24 | 29 | 31 | 34 | 37 | 42 | 46 | 52 | 59 | 66 | 71 | 92 | 106 | 116 | | 177 | 205 | | 279 | | | | 6N@ | 54 | 19 | 22
| 24 | 27 | 30 | 33 | 35 | 39 | 41 | 47 | 56 | 60 | 65 | 80 | 95 | 109 | | 160 | | 211 | | | | | 9.17 | 60 | 19 | 20 | 23 | 25 | 30 | 31 | 34 | 37 | 40 | 44 | 50 | 58 | 61 | 77 | 96 | 105 | 112 | | ł | | 226 | 279 | | | | 66 | 20 | 20 | 23 | 26 | 29 | 32 | 32 | 35 | 37 | 41 | 49 | 52 | 59 | 72 | 84 | 99 | 110 | | | | 205 | 269 | | | | 44 | 22 | 25 | 28 | 33 | 36 | 41 | 46 | 51 | 54 | 62 | 71 | 78 | 91 | 105 | 131 | 153 | 176 | | 263 | | | | | | | 48 | 21 | 24 | 28 | 31 | 34 | 39 | 45 | 46 | 52 | 59 | 68 | 77 | 79 | 106 | 117 | 143 | 158 | 205 | 237 | 291 | | | | | 7N@ | 54 | 19 | 24 | 26 | 29 | 32 | 36 | 39 | 43 | 48 | 57 | 64 | 69 | 78 | 95 | 109 | 129 | 148 | 182 | 213 | 259 | | | | | 7.86 | 60 | 20 | 23 | 25 | 29 | 31 | 34 | 37 | 41 | 43 | 50 | 59 | 67 | 70 | | 406 | | 138 | 166 | 199 | 235 | 277 | | | | | 66 | 20 | 23 | 25 | 29 | 32 | 33 | 37 | 38 | 43 | 50 | 54 | 60 | 68 | | 100 | | | | 194 | 219 | 261 | 317 | | 55 | | 44 | 25 | 30 | 35 | 41 | 46 | 54 | 58 | 63 | 70 | 78 | 92 | 101 | 110 | | 166 | | | 282 | | | | | | | | 48 | 25 | 28 | 33 | 39 | 43 | 49 | 55 | 60 | 64 | 72 | 84 | | 108 | | 157 | | | 266 | | | | | | | 9N@ | 54 | 25 | 28 | 33 | 38 | 42 | 46 | 51 | 57 | 58 | 69 | 79 | 87 | 97 | | 148 | | | | 282 | | | | | | 6.11 | 60 | 24 | 28 | 33 | 37 | 40 | 43 | 48 | 50 | 58 | 67 | 79 | 83 | 89 | | 124 | | | | 264 | | 040 | | | | | 66 | 24 | 27 | 31 | 35 | 39 | 42 | 45 | 50 | 52 | 61 | 70 | 77 | 85 | | 117 | | | 194 | 242 | 286 | 319 | - | | | | 44 | 31 | 37 | 46 | 52
47 | 58 | 66 | 70
67 | 78
72 | 91 | 101 | | 131 | 142 | 1 <i>7</i> 9
158 | 205 | | 297 | | | | | | | | 1110 | 48
54 | 29 | 34 | 41 | 47
46 | 55
40 | 63
57 | 67
62 | 72
60 | 79
73 | | | | | 158
150 | | | 269 | 300 | | | | | | | 11N@
5.00 | 5 4
60 | 28
26 | 33 | 39
37 | 46
41 | 49
48 | 57
51 | 62
59 | 69
64 | 68 | 81
80 | 96
84 | | | | | | | 302
269 | | | | | | | 5.00 | 66 | 26
27 | 32 | | 39 | | | | | 65 | | l . | | 112 | 124 | | | | | 293 | | | | | | | 44 | 39 | 31
46 | 36
55 | 63 | 46
71 | 50
79 | 55
92 | 62
102 | 107 | 74
121 | | | 102
179 | 218 | | 170 | 194 | ∠01 | ∠93 | | | - | | | | 48 | 36 | 43 | 50 | 63 | 71 | 79
77 | 80 | 94 | 107 | 1 | | | | 206 | | 302 | | | | | | | | | 14N@ | 54 | 34 | 41 | 49 | 57 | 66 | 71 | 75 | 83 | 97 | | 120 | | 152 | | 215 | | 307 | | | | | | | | 3.93 | 60 | 31 | 39 | 46 | 52 | 61 | 68 | 77 | 78 | 85 | | | 123 | | | 202 | | 284 | | | | | | | | 3.00 | | 32 | 38 | 44 | 50 | 57 | 63 | 71 | 75 | 80 | | | 119 | | | 197 | | 262 | 321 | | | | | | | g Depth | - 50 | | 50 | | 55 | 51 | | /2 in. | , , | _ 55 | - 50 | . 10 | | | .00 | .01 | | 202 | | 0 in. | | 1 | L | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. # DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY Based on a 50ksi maximum yield strength | Girder
Span | Joist
Spaces | Girder | | | | erigii | | | Jo | oist C | | | | | | | near | Foot | | | | | | | |----------------|-----------------|-----------|----------|----------|------------|----------|----------|----------|-----------|------------|-----------|-----------|-----------|-----------|--------|---------------|-----------|------------|------------|------------|------------|------------|------------|------------| | (ft) | (ft) | (in) | | | | | | | | | L | oad c | n Ea | cn P | anel I | Point | | | | | | | | | | | | LRFD | 6K | 7.5K | 9K | 10.5K | | 13.5K | | 16.5K | | 21K | 24K | 27K | | 37.5K | | 52.5K | 60K | 75K | 90K | 105K | 120K | | | | | ASD
48 | 4K
21 | 5K
23 | 6K
26 | 7K
28 | 8K
31 | 9K
34 | 10K
37 | 11K
42 | 12K
43 | 14K
50 | 16K
55 | 18K
62 | 20K | 25K 85 | 30K
96 | 35K
111 | 40K
125 | 50K
153 | 60K
189 | 70K
218 | 80K
252 | 100K | | | | 54 | 21 | 21 | 24 | 27 | 30 | 32 | 35 | 38 | 42 | 44 | 51 | 56 | 62 | 75 | 88 | 106 | 112 | | 168 | | 221 | 281 | | | 5N@ | 60 | 21 | 22 | 23 | 26 | 28 | 30 | 33 | 35 | 38 | 44 | 46 | 51 | 57 | 68 | 86 | 95 | 108 | | 158 | 182 | | 256 | | | 12.00 | 66 | 22 | 22 | 23 | 25 | 28 | 29 | 33 | 34 | 36 | 40 | 46 | 47 | 53 | 65 | 78 | 91 | 97 | 117 | 139 | 162 | 188 | 228 | | | 12.00 | 72 | 22 | 23 | 23 | 24 | 27 | 29 | 31 | 34 | 35 | 38 | 44 | 47 | 52 | 62 | 72 | 81 | 93 | | 135 | 164 | 177 | 217 | | | | 48 | 21 | 23 | 26 | 31 | 34 | 38 | 40 | 46 | 47 | 58 | 66 | 70 | 77 | 100 | 114 | 131 | 152 | | | 262 | 177 | 217 | | | | 54 | 19 | 23 | 25 | 29 | 32 | 35 | 38 | 41 | 45 | 53 | 59 | 67 | 71 | 92 | 106 | 117 | 119 | | 204 | 229 | 269 | | | | 6N@ | 60 | 19 | 22 | 26 | 28 | 31 | 34 | 36 | 39 | 42 | 48 | 55 | 61 | 68 | 81 | 95 | 110 | 134 | | | 209 | 242 | | | | | | | | | | | | | 67 | | | | | | | | | | | | | 216 | 070 | | | 10.00 | 66
72 | 20
20 | 22
21 | 25
24 | 27
27 | 30
29 | 32
32 | 34
33 | 35 | 41 | 47 | 50
50 | 58
52 | 62 | 77
72 | 96
84 | 106
99 | 112
114 | | | | 206 | 278
266 | | | | | | | | | | | | | 38 | 43 | 50 | _ | 60 | | | | | | 166 | 188 | 200 | 200 | | | | 48 | 24 | 28 | 32 | 38 | 41 | 48 | 54 | 55 | 62 | 70 | 78 | 92 | 101 | | 152 | 176 | 192 | | 000 | | | | | | ON | 54 | 23 | 26 | 31 | 35 | 39 | 43 | 47 | 55 | 56 | 64 | 72 | 81 | 94 | 109 | 134 | 158 | 180 | | 268 | 000 | | | | | 8N@ | 60 | 23 | 26 | 29 | 32 | 38 | 41 | 44 | 49 | 52 | 59 | 66 | 76 | 83 | 106 | 120 | 149 | 163 | | | 290 | 040 | | | | 7.50 | 66 | 29 | 31 | 34 | 36 | 40 | 46 | 48 | 50 | 56 | 64 | 72 | 76 | 82 | 101 | 116 | 142 | 165 | 191 | 230 | 280 | 313 | | | | | 72 | 30 | 31 | 33 | 34 | 38 | 43 | 47 | 49 | 51 | 59 | 69 | 74 | 83 | 102 | 118 | 126 | 147 | 190 | 228 | 255 | 191 | | | 60 | | 48 | 30 | 36 | 43 | 50 | 58 | 65 | 66 | 75 | 78 | 92 | 106 | 116 | 132 | 157 | 193 | 229 | 265 | 000 | | | | | | | | 54 | 29 | 34 | 40 | 46 | 51 | 59 | 60 | 68 | 76 | 88 | 95 | 107 | 144 | | 180 | 205 | 232 | | | | | | | | 10N@ | 60 | 27 | 33 | 38 | 41 | 47 | 53 | 61 | 61 | 70 | 79 | 90 | 97 | 110 | 136 | | 183 | 210 | | | | | | | | 6.00 | 66 | 27 | 32 | 36 | 40 | 46 | 49 | 55 | 62 | 64 | 75 | 81 | 97 | 99 | 120 | 143 | 165 | 190 | | | | | | | | | 72 | 27 | 32 | 35 | 39 | 43 | 48 | 53 | 58 | 61 | 73 | 77 | 86 | 100 | 116 | | 169 | 191 | 225 | 283 | | | | | | | 48 | 35 | 41 | 49 | 55 | 63 | 71 | 79 | 92 | 93 | 107 | 116 | 142 | 156 | | | 266 | | | | | | | | | | 54 | 33 | 39 | 46 | 50 | 57 | 65 | 73 | 80 | 81 | 104 | 109 | 118 | 135 | 172 | 197 | 238 | 274 | | | | | | | | 12N@ | 60 | 32 | 37 | 41 | 50 | 56 | 59 | 67 | 74 | 79 | 96 | 107 | 112 | 121 | 163 | 187 | 219 | 247 | | | | | | | | 5.00 | 66 | 31 | 36 | 40 | 47 | 53 | 60 | 61 | 68 | 76 | 85 | 99 | 110 | 115 | | 177 | 201 | 228 | | | | | | | | | 72 | 30 | 35 | 40 | 44 | 52 | 54 | 63 | 64 | 75 | 80 | 89 | 104 | 114 | | 160 | 194 | 219 | 273 | 319 | | | | | | | 48 | 39 | 49 | 62 | 70 | 78 | 92 | 101 | 106 | 110 | 132 | 155 | 167 | 189 | 228 | 289 | | | | | | | | | | | 54 | 37 | 47 | 56 | 64 | 73 | 81 | 94 | 95 | 105 | 118 | 135 | 158 | 171 | 208 | 254 | 298 | | | | | | | | | 15N@ | 60 | 35 | 42 | 51 | 59 | 68 | 76 | 83 | 88 | 98 | 112 | 122 | 141 | 164 | 197 | 229 | 276 | 307 | | | | | | | | 4.00 | 66 | 36 | 44 | 54 | 57 | 65 | 73 | 80 | 88 | 94 | 113 | 118 | 130 | 158 | 193 | 221 | 261 | 294 | | | | | | | | | 72 | 36 | 43 | 49 | 57 | 67 | 75 | 77 | 84 | 91 | 107 | 121 | 126 | 143 | 178 | 219 | 240 | 283 | | | | | | | | | 54 | 22 | 25 | 28 | 31 | 34 | 38 | 43 | 45 | 47 | 55 | 66 | 69 | 75 | 92 | 107 | 132 | 152 | 177 | 207 | 250 | 288 | | | | 6N@ | 60 | 22 | 24 | 2 6 | 31 | 32 | 36 | 38 | 42 | 46 | 53 | 60 | 67 | 71 | 92 | 107 | 116 | 133 | 169 | 195 | 231 | 262 | | | | 10.83 | 66 | 22 | 24 | 26 | 29 | 31 | 34 | 36 | 40 | 43 | 49 | 54 | 61 | 68 | 80 | 96 | 110 | 119 | 159 | 184 | 209 | 236 | | | | | 72 | 23 | 24 | 26 | 29 | 30 | 33 | 35 | 39 | 43 | 47 | 50 | 56 | 63 | 75 | 92 | 107 | | 141 | | 196 | 218 | 276 | | | | 54 | 24 | 28 | 33 | 38 | 42 | 47 | 52 | 5 5 | 63 | 70 | 78 | 92 | 101 | | 143 | | 192 | 229 | 284 | | | | | | 8N@ | 60 | 23 | 26 | 32 | 36 | 39 | 43 | 48 | 50 | 57 | 65 | 72 | 80 | 94 | | 135 | | 180 | 210 | 259 | | | | | | 8.13 | 66 | 32 | 34 | 41 | 43 | 44 | 48 | 53 | 55 | 61 | 68 | 73 | 81 | 93 | 114 | 133 | 151 | 167 | 212 | 246 | 296 | | | | | | 72 | 32 | 34 | 34 | 42 | 45 | 47 | 49 | 54 | 57 | 69 | 74 | 82 | 83 | 106 | | 143 | 167 | 194 | 241 | 277 | | | | | | 54 | 31 | 37 | 44 | 50 | 56 | 63 | 67 | 75 | 76 | 92 | 107 | 113 | 127 | | 182 | | 243 | | | | | | | | 10N@ | 60 | 30 | 35 | 41 | 46 | 52 | 58 | 64 | 68 | 77 | 88 | 95 | 109 | 115 | | 180 | | 222 | 283 | | | | | | 65 | 6.50 | 66 | 28 | 34 | 39 | 44 | 47 | 54 | 61 | 65 | 70 | 82 | 91 | 98 | 112 | | 163 | | 210 | 263 | | | | | | | | 72 | 28 | 34 | 37 | 41 | 47 | 50 | 56 | 63 | 63 | 72 | 81 | 94 | 100 | 120 | 143 | 168 | 193 | 247 | 295 | | | | | | | 54 | 32 | 39 | 45 | 52 | 59 | 66 | 71 | 77 | 87 | 101 | 107 | 126 | 133 | | 205 | | 264 | | | | | | | | 11N@ | 60 | 32 | 36 | 45 | 48 | 54 | 61 | 69 | 73 | 78 | 94 | 108 | 110 | 118 | 160 | 181 | 208 | 243 | | | | | | | | 5.91 | 66 | 30 | 36 | 41 | 46 | 50 | 56 | 62 | 70 | 71 | 83 | 97 | 111 | 113 | 141 | 166 | 200 | 215 | 287 | | | | | | | | 72 | 29 | 34 | 39 | 43 | 50 | 55 | 60 | 65 | 73 | 81 | 93 | 100 | 114 | 167 | 166 | 187 | 214 | 257 | | | | | | | | 54 | 36 | 42 | 50 | 57 | 65 | 72 | 80 | 92 | 102 | 108 | 123 | 144 | 158 | 192 | 229 | 269 | | | | | | | | | 13N@ | 60 | 34 | 40 | 49 | 57 | 61 | 70 | 74 | 81 | 94 | 105 | 111 | 125 | 148 | 182 | 209 | 252 | 286 | | | | | | | | 5.00 | 66 | 33 | 38 | 45 | 52 | 60 | 67 | 72 | 75 | 83 | 99 | 109 | 116 | 129 | | 199 | 234 | 263 | | | | | | | | | 72 | 32 | 38 | 43 | 51 | 55 | 62 | 70 | 77 | 78 | 88 | 110 | 116 | 120 | 158 | 182 | 210 | 253 | 309 | | | | | | Bearin | g Depth | | | | | | | 7 | 1/2 in | | | | | | | | | | | 0 in. | | | | | Joist Girder weights
between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. ### **DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY** Based on a 50ksi maximum yield strength | | on a 50 | | | iiii yid | JIU SII | rengu | | | l. | | S. CC | | | | ndo F | Or Li | noor | Foot | | | | | | | |----------------|--------------|-------------|----------|------------|------------------|----------|----------|----------------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|-------------|-------------|--------------| | Girdei
Span | Spaces | | | | | | | | J | DIST C | | oad c | | | | | near | FOOL | | | | | | | | (ft) | (ft) | (in) | CV. | 7.E.V. | OK | 10.5K | 101 | 12 EK | 1EV | 16 EK | | | | | | 37.5K | 4EK | 52.5K | 60K | 75K | 001 | 10EK | 1206 | 150K | | | | LRFD
ASD | 4K | 7.5K
5K | 9K
6K | 7K | 8K | 13.5K
9K | 15K
10K | 16.5K
11K | 18K
12K | 21K
14K | 24K
16K | 27K
18K | 20K | | 45K
30K | 35K | 60K
40K | 75K
50K | 90K
60K | 105K
70K | 120K
80K | 150K
100K | | | | 54 | 24 | 28 | 32 | 36 | 40 | 44 | 50 | 54 | 58 | 65 | 73 | 86 | 91 | | 131 | 153 | 175 | l . | 263 | | | | | | 7N@ | 60
66 | 23
23 | 26
27 | 31
31 | 33
32 | 38
36 | 44
39 | 46
45 | 51
47 | 53
52 | 63
59 | 67
67 | 75
71 | 87
78 | | 126
114 | 153
135 | 165
156 | l | 242
222 | 284
260 | | | | | 10.00 | 72 | 23 | 26 | 29 | 33 | 35 | 39 | 43 | 47 | 48 | 55 | 62 | 70 | 78 | - | 111 | 121 | 140 | l . | 211 | 145 | 286 | | | | | 84 | 26 | 28 | 30 | 32 | 35 | 37 | 40 | 44 | 47 | 51 | 59 | 66 | 71 | | 102 | 117 | 125 | | 192 | | 254 | 313 | | | | 54 | 27 | 33 | 37 | 44 | 48 | 54 | 61 | 66 | 70 | 90 | 100 | 105 | 114 | | 174 | 202 | 225 | 276 | | | | | | | 9N@ | 60
66 | 25
25 | 31
31 | 35
35 | 40
40 | 47
47 | 49
49 | 56
56 | 64
62 | 67
69 | 76
74 | 93
82 | 102
96 | 107
106 | 134
121 | 156
149 | 180
174 | 205
200 | 256 | 300 | | | | | | 7.78 | 72 | 25 | 31 | 35 | 40 | 46 | 49 | 56 | 57 | 63 | 72 | 81 | 93 | 99 | | 141 | 163 | 185 | 216 | | | | | | | | 84 | 25 | 31 | 35 | 40 | 43 | 49 | 51 | 53 | 58 | 67 | 76 | 80 | 89 | 104 | 119 | 145 | 171 | 195 | 234 | 287 | 317 | | | | | 54 | 33 | 43 | 50 | 58 | 66 | 67 | 75 | 86 | 92 | 106 | 115 | 132 | 153 | 4 | 217 | 250 | 258 | | | | | | | 70 | 11N@ | 60
66 | 32
32 | 40
38 | 46
44 | 51
47 | 59
55 | 67
61 | 68
68 | 76
40 | 87
78 | 94 | 108
97 | 118
110 | 134
120 | | 205
183 | 231
207 | 236
221 | 290 | | | | | | ,,, | 6.36 | 72 | 31 | 36 | 41 | 47 | 54 | 57 | 63 | 72 | 73 | 83 | 98 | 112 | 114 | 142 | | 191 | 196 | 256 | 300 | | | | | | | 84 | 31 | 35 | 39 | 45 | 50 | 53 | 58 | 68 | 68 | 76 | 87 | 99 | 106 | 126 | | 172 | | | | | | | | | | 54
60 | 36
34 | 45
41 | 52
48 | 59
56 | 67
60 | 75
68 | 78
77 | 92
80 | 101
93 | 107
107 | 132
115 | 142
133 | 154
145 | 192
180 | | 268
245 | 287
267 | | | | | | | | 12N@ | 66 | 32 | 39 | 47 | 50 | 58 | 65 | 77
70 | 78 | 82 | 96 | 110 | 120 | 136 | | 198 | 224 | 246 | 304 | | | | | | | 5.83 | 72 | 33 | 38 | 44 | 50 | 57 | 63 | 69 | 73 | 71 | 94 | 108 | 117 | 124 | | 188 | 214 | | | | | | | | | | 84 | 31 | 37 | 42 | 47 | 53 | 55 | 65 | 69 | 80 | 86 | 91 | 106 | 119 | | 170 | 196 | 221 | 277 | 318 | | | | | | | 54
60 | 40
38 | 48
46 | 58
56 | 66
64 | 75
71 | 90
79 | 92
92 | 105
93 | 106
104 | 131
117 | 152
133 | 164
155 | 177
169 | | 266
244 | 288 | | | | | | | | | 14N@ | 66 | 36 | 43 | 50 | 58 | 65 | 74 | 81 | 94 | 96 | 110 | 120 | 136 | 160 | 1 1 | 233 | 267 | | | | | | | | | 5.00 | 72 | 36 | 42 | 51 | 58 | 65 | 72 | 76 | 84 | 95 | 110 | 115 | 126 | 145 | | 223 | 251 | 285 | | | | | | | | | 84
60 | 34
29 | 43
32 | 47
38 | 54
43 | 62
47 | 66
52 | 74
58 | 78
65 | 83
66 | 101
78 | 108
91 | 122
100 | 134
105 | | 199
153 | 234
189 | 262 | 320
253 | | | | | | | | 66 | 29 | 32 | 36 | 40 | 46 | 48 | 53 | 59 | 63 | 71 | 79 | 93 | 105 | | 154 | 177 | 192 | l | 284 | | | | | | 8N@ | 72 | 30 | 32 | 34 | 38 | 43 | 47 | 79 | 54 | 61 | 69 | 78 | 89 | 95 | | 136 | 159 | 182 | 260 | | | | | | | 10.00 | 84 | 30 | 32 | 34 | 38 | 43 | 47 | 48 | 54 | 61 | 69 | 78 | 89 | 95 | | 134 | 157 | 179 | 217 | 264 | | | | | | | 96
60 | 30
32 | 32
37 | 34
42 | 38
49 | 43
55 | 47
62 | 49
70 | 54
78 | 61
78 | 100 | 78
105 | 89
115 | 95 | | 126
191 | 141
226 | 163
252 | 199 | 225 | 272 | 301 | | | | | 66 | 35 | 42 | 46 | 55 | 61 | 64 | 72 | 77 | 86 | 98 | 109 | 114 | 129 | | 194 | 219 | 250 | | | | | | | | 10N@ | 72 | 34 | 38 | 46 | 51 | 57 | 64 | 65 | 74 | 78 | 91 | 101 | 110 | 126 | | 183 | 207 | 235 | | | | | | | | 8.00 | 84
96 | 34
35 | 37
36 | 46
42 | 48
48 | 53
50 | 59
55 | 61
58 | 67
64 | 72
72 | 82
78 | 95
86 | 104
98 | 113
104 | | 166
143 | 185
171 | 212
192 | 256
239 | 201 | | | | | 80 | | 60 | 40 | 47 | 59 | 66 | 71 | 78 | 92 | 101 | 106 | 116 | 143 | 155 | 175 | | 252 | 171 | 192 | 239 | 201 | | | | | | | 66 | 38 | 47 | 54 | 60 | 68 | 77 | 80 | 94 | 103 | 109 | 134 | 145 | 157 | | 231 | 261 | | | | | | | | | 13N@ | 72 | 37 | 44 | 50 | 59 | 67 | 71 | 79 | 83 | 96 | 111 | 120 | 137 | 152 | 4 | 213 | 253 | 298 | | | | | | | | 6.15 | 96 | 36
37 | 43
42 | 5 0
47 | 54
53 | 59
57 | 67
66 | 75
72 | 79
81 | 84
79 | | 112
109 | 119
118 | 128
124 | 170
155 | | 229
201 | 255
235 | 294 | | | | | | | | 60 | 47 | 55 | 67 | 78 | | 101 | 107 | 115 | 132 | 153 | 175 | _ | | 252 | | | | | | | | | | | 10110 | 66 | 44 | 55 | 65 | 72 | 80 | 94 | | 109 | 117 | | 158 | 180 | 194 | 232 | | | | | | | | | | | 16N@
5.00 | 72
84 | 43
42 | 51
49 | 59
57 | 70
64 | 79
74 | 83
81 | | 107
104 | 111
106 | | 149
131 | 162
152 | 185
174 | 225
207 | | 287 | | | | | | | | | | 96 | 44 | 48 | 58 | 64 | 70 | 81 | 86 | 92 | 97 | | 128 | | 159 | | | | 298 | | | | | | | | aua | 72 | 38 | 40 | 44 | 47 | 52 | 57 | 61 | 68 | 76 | 88 | 94 | 108 | 115 | 145 | | 205 | l | 278 | | | | | | | 9N@
10.00 | 84
96 | 38
38 | 40
40 | 44
44 | 47
47 | 52
52 | 57
57 | 61
61 | 69
67 | 73
71 | 82
77 | 94
85 | 104
98 | 114
108 | | 162
139 | 4 | | 258
221 | 270 | | | | | | 10.00 | 108 | 38 | 40 | 44 | 47 | 52
52 | 57
57 | 61 | 67 | 70 | 75 | 80 | 89 | 99 | | 129 | | l | | 247 | 286 | | | | | | 72 | 41 | 46 | 51 | 61 | 64 | 73 | 78 | 89 | 94 | 108 | 115 | 131 | 146 | 181 | 216 | 246 | | | | - | | | | | 11N@ | 84 | 41 | 45 | 47 | 53
50 | 61 | 67
64 | 72
70 | 78 | 90 | 94 | 113 | | 133 | 161 | | 220 | 250 | 000 | | | | | | | 8.18 | 96
108 | 44
45 | 45
46 | 47
48 | 50
51 | 56
57 | 64
60 | 70
66 | 72
75 | 80
76 | 94 | 98
98 | | 123
113 | | 180
164 | | 235
204 | 286
262 | | | | | | 90 | | 72 | 45 | 55 | 61 | 72 | 80 | 94 | 103 | 109 | 114 | | | 179 | 184 | 233 | | | | | | | | | | | 15N@ | 84 | 47 | 50 | 58 | 65 | 73 | 81 | 93 | 98 | 112 | 121 | 140 | _ | 4 | 210 | | | 005 | | | | | | | | 6.00 | 96
108 | 48
49 | 50
53 | 57
57 | 64
62 | 71
70 | 81
75 | 87
83 | 92
93 | 1 | 121
113 | 128 | | 163
152 | | 232
210 | | 302
277 | | | | | | | | | 72 | 49 | 62 | 73 | 80 | | | | 128 | _ | _ | | | 229 | 280 | <u> </u> | <u>_</u> 73 | <i>L11</i> | | | | | | | | 18N@ | 84 | 49 | 62 | 74 | 82 | 91 | 107 | 117 | 122 | 130 | 149 | 174 | 195 | 210 | 256 | | | | | | | | | | | 5.00 | 96 | 49 | 60 | 69
66 | 77 | 86 | | 111 | | 126 | | | | | 233 | | 200 | | | | | | | | Bearin | ng Depth | 108 | 49 | 61 | 66 | 74 | | 92
7 1/2 i | | 115 | 118 | 132 | 145 | 165 | 184 | 223 | 26/ | 298 | 10 ir |).
1. | | | | | | Scarii | a pehui | | | | | | | . 1/4 | ••• | | | | | | | | | | .0 11 | | | | | | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. # DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS strength U. S. CUSTOMARY Based on a 50ksi maximum yield strength | Girder | Joist | Girder | | | | | | | J | oist C | airde | r Wei | ght - | Pou | nds F | Per Li | inear | Foot | | | | | | | |--------------|-------------|---------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|-------|-----|-----|-----|------|------|------| | Span
(ft) | Spaces (ft) | Depth
(in) | | | | | | | | | L | oad o | n Ea | ch P | anel I | Point | | | | | | | | | | , , | | LRFD | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | 15K | 16.5K | 18K | 21K | 24K | 27K | 30K | 37.5K | 45K | 52.5K | 60K | 75K | 90K | 105K | 120K | 150K | | | | ASD | 4K | 5K | 6K | 7K | 8K | 9K | 10K | 11K | 12K | 14K | 16K | 18K | 20K | 25K | 30K | 35K | 40K | 50K | 60K | 70K | 80K | 100K | | | | 84 | 56 | 57 | 58 | 62 | 64 | 72 | 76 | 88 | 90 | 103 | 118 | 129 | 142 | 172 | 200 | 225 | 257 | | | | | | | | 10N@ | 96 | 58 | 58 | 59 | 61 | 64 | 67 | 70 | 78 | 88 | 94 | 106 | 120 | 131 | 152 | 180 | 204 | 228 | | | | | | | | 10.00 | 108 | 58 | 60 | 60 | 61 | 63 | 68 | 70 | 73 | 77 | 93 | 96 | 111 | 111 | 139 | - | 188 | | 258 | | | | | | | | 120 | 60 | 60 | 62 | 64 | 66 | 67 | 68 | 71 | 74 | 85 | 99 | 108 | 113 | | 157 | | 201 | 242 | 289 | | | | | | 40010 | 84 | 50 | 54 | 58 | 66 | 70 | 75 | 89 | 92 | 101 | 112 | 129 | 138 | 159 | | | 257 | 074 | | | | | | | | 12N@ | 96 | 50 | 54 | 57 | 61 | 68 | 70 | 80
 84 | 96 | | 116 | 123 | 137 | | 205 | | 271 | 000 | | | | | | | 8.33 | 108 | 52 | 54 | 58 | 62 | 65 | 72 | 74 | 79 | 89 | | 110 | 121 | 128 | 164 | | | 246 | 299 | | | | | | | | 120
84 | 54
55 | 57
60 | 60
71 | 62
76 | 66
83 | 69
96 | 77
110 | 79
112 | 86
119 | 92
139 | 107 | 117
184 | 126
199 | 151
235 | 178
288 | 206 | 239 | 283 | | | | | | | 16N@ | 96 | ວວ
56 | 60 | 67 | 76
75 | 79 | 96
88 | 102 | 1 | 119 | 128 | 161
145 | 168 | 199 | 218 | | 301 | | | | | | | | 100 | 6.25 | 108 | 58 | 63 | 67 | 73
72 | 81 | 87 | 93 | 106 | 111 | 125 | 136 | 157 | 180 | 204 | | 292 | | | | | | | | 100 | 0.23 | 120 | 60 | 65 | 68 | 74 | 79 | 90 | 93 | | 110 | 117 | | 147 | 166 | - | 248 | _ | 304 | | | | | | | | | 84 | 57 | 65 | 73 | 82 | 92 | 98 | 112 | 114 | 123 | 151 | 164 | 187 | 203 | 250 | 240 | 213 | 304 | | | | | | | | 17N@ | 96 | 60 | 65 | 72 | 81 | 89 | 103 | 110 | 123 | 123 | 145 | 177 | 179 | 198 | | 285 | | 4 | | | | | | | | 5.88 | 108 | 64 | 67 | 72 | 76 | 86 | 96 | | 1 | 123 | | | 172 | 182 | 231 | | 308 | | | | | | | | | 0.00 | 120 | 67 | 68 | 73 | 80 | 85 | 90 | | _ | 119 | 133 | | 167 | 178 | 214 | - | 281 | 330 | | | | | | | | | 84 | 67 | 77 | 87 | 105 | 115 | 122 | 132 | 148 | 159 | 193 | _ | 226 | 246 | | | | | | | | | | | | 20N@ | 96 | 67 | 73 | 82 | 95 | 111 | 120 | 126 | 135 | 152 | 177 | 199 | 211 | 227 | 279 | | | | | | | | | | | 5.00 | 108 | 66 | 72 | 79 | 91 | 101 | 116 | 125 | 130 | 131 | 162 | 184 | 197 | 207 | 267 | 316 | | | | | | | | | | | 120 | 71 | 75 | 82 | 88 | 96 | 106 | 120 | 123 | 136 | 149 | 170 | 193 | 205 | 246 | 289 | 332 | | | | | | | | Bea | aring De | pth | | | | | 7 1/2 | in. | | | | | | | | | | 10 ir | 1. | | | | | | Joist Girder weights between the heavy black and blue lines have 7 1/2 inch bearing depths. Joist Girder weights to the right of the heavy blue line have 10 inch bearing depths. Check with Vulcraft for material availability. # APPENDIX A - FIRE-RESISTANCE RATINGS WITH STEEL JOISTS The Underwriters Laboratories (U.L.) Fire Resistance Directory lists hundreds of assemblies and their fire resistance ratings. The Specifying Professional can choose between numerous Floor-Ceiling and Roof-Ceiling assemblies that include steel joists and Joist Girders. As a convenience, a selected number of assemblies are listed on the following pages. In addition, the Steel Joist Institute's Technical Digest #10 "Design of Fire Resistive Assemblies with Steel Joists" has a complete listing of steel joist assemblies and additional information about fire ratings. However, the listing that follows and the Technical Digest are intended as a guide only, and the Specifying Professional must refer to the current U.L. Fire Resistance Directory for complete design requirements. Hundreds of fire tests on steel joist-supported assemblies have been conducted at nationally recognized testing laboratories in accordance with ASTM Standard E119, ANSI A2.1/UL 263, and NFPA 251. Because of practical loading restrictions and limitations of furnace dimensions, the vast majority of these tests were run using lightweight joists – normally from 8 inches to 14 inches (203 mm to 356 mm) deep. This practice was advantageous in that it established the *minimum* acceptable joists at the shallow and lightweight end of the joist load tables. This also resulted in a specified minimum joist designation being listed in the U.L. Fire Resistance Assembly, which is the joist that combines the required minimum depth and minimum weight per foot. Joists of the same series which equal or exceed the specified minimum joist depth and joist weight per foot may be used provided the accessories are compatible. The dimension from the bottom chord of the joists to the ceiling, whether given or calculated, is a minimum. Where a U.L. Fire Resistance Assembly is being utilized, the Specifying Professional shall indicate the assembly number being used on the structural contract drawings. In addition, the Specifying Professional shall consider the following, as applicable: - Joist designations specified on the structural contract drawings shall not be less than the minimum size for that assembly. The assembly may also require a minimum bridging size that may be larger than required by the SJI Specifications for the particular designation and joist spacing. - Some assemblies stipulate minimum size materials or minimum cross sectional areas for individual joist and Joist Girder components. It is the responsibility of the Specifying Professional to show all special requirements on the contract drawings. - Note that the maximum joist spacing shown for Floor-Ceiling Assemblies may be increased from the spacing listed in the U.L. Fire Resistance Directory to a maximum of 48 inches on center, provided the floor slab meets the structural requirements and the spacing of hanger wires supporting the ceiling is not increased. - Some assemblies stipulate an allowable maximum joist design stress level less than the 30 ksi (207 MPa) used in the joist and Joist Girder specifications. It is the responsibility of the Specifying Professional to apply the proper stress level reductions (when applicable) when selecting joists and/or Joist Girders. This is accomplished by prorating the joist and/or Joist Girder capacities. To adjust the stress level of joists or Joist Girders, multiply the design load by the ratio of the joist design stress to the required maximum [e.g. 30/26 (207/179), 30/24 (207/165), 30/22 (207/152)], and then using this increased load, select a joist or Joist Girder from the load and/or weight tables. - Some U.L. Roof-Ceiling Assemblies using direct applied protection limit the spacing of the joists for certain types and gages of metal decking – refer to the U.L. Fire Resistance Directory for this information. - Where fire protective materials are to be applied directly to the steel joists or Joist Girders, it is often desired to have the joist furnished as unpainted. The Specifying Professional should indicate on the structural contract drawings if the joists or Joist Girders are to be painted or not. - Certain older U.L. fire rated assemblies may refer to joist series that predate the K-series joists. Where one of these assemblies is selected, refer to the U.L Fire Resistance Directory for special provisions for substituting a K-Series joist in lieu of an S-, J-, and/or H-Series joist. # **ROOF - CEILING ASSEMBLIES WITH MEMBRANE PROTECTION** | | | I | Ruilt | Up Roof | Maximum | Minimum | | |------------|--------------|------------|---------------------------|------------------------|---------|-----------------------|--------| | Restrained | Protection | Minimum | Built | ор коог | Joist | Primary | UL | | Assembly | | | Deck Material | lua vilatia u | | | Design | | Rating | Material | Joist Size | Description | Insulation | Spacing | Support | Number | | | | 401/4 | 22 MSG Min. | | (in.) | Member | Dood | | | | 12K1 | | | 84 | W8 x 17
W6 x 12 | P201 | | | | 10K1 | 26 MSG Min. | | 48 | | P202 | | | | 10K1 | 26 MSG Min. | | 48 | 20G@13plf | P211 | | | | 12K3 | 28 MSG Min. | Fiber Board | 72 | 20G@13plf
W8 x 17 | P214 | | | | 12K1 | 26 MSG Min. | | 72 | 20G@13plf
W6 x 12 | P225 | | | | 12K3 | 24 MSG Min. | Building Units | 48 | NS | P227 | | | | 12K3 | 26 MSG Min. | Fiber Board | 72 | 20G@13plf
W6 x 12 | P230 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 48 | 20G@14plf*
W8 x 15 | P231 | | | | 12K3 | 24 MSG Min. | Foamed Plastic | 72 | W8 x 15 | P235 | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W8 x 15 | P246 | | | | 12K5 | 26 MSG Min. | Fiber Board | 48 | W6 x 12 | P250 | | | Exposed Grid | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P251 | | | | 10K1 | 22 MSG Min. | Fiber Board | 72 | W6 x 12 | P254 | | 1 Hr. | | 10K1 | 28 MSG Min. | Insulating
Concrete | 72 | W8 x 15 | P255 | | | | 10K1 | 24 MSG Min. | Fiber Board | 72 | NS | P259 | | | | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P261 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 72 | W8 x 15 | P264 | | | | 10K1 | Metal Roof
Deck Panels | Batts and
Blankets | 60 | NS | P265 | | | | 10K1 | 26 MSG Min. | Fiber Board | 48 | W6 x 16 | P267 | | | | 10K1 | Metal Roof
Deck Panels | Batts and
Blankets | 60 | NS | P268 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 72 | 20G@14plf* | P269 | | | | 10K1 | 24 MSG Min. | | NS | W8 x 15
W6 x 16 | P301 | | | Fiber Board | 10K1 | 22 MSG Min. | Fiber Board | 48 | NS | P302 | | | | 10K1 | 22 MSG Min. | | NS | W6 x 16 | P303 | | | Gypsum Board | 12K3 | 26 MSG Min. | Insulating
Concrete | 60 | W8 x 24 | P509 | | | Sypsum Duard | 12K3 | 24 MSG Min. | Fiber Board | 72 | 20C@425lt | P510 | | | | 12/\3 | 24 IVISG IVIIII. | FINEL DUALU | 12 | 20G@13plf | F310 | | | | | | | | W8 x 13 | | |-----------|---------------|------|---------------------------|---------------------------|----|-----------------------|------| | | | 10K1 | 22 MSG Min. | Fiber Board | 72 | 20G@13plf | P514 | | | | 10K1 | 20 MSG Min. | Fiber Board | 48 | NS | P519 | | | | 12K1 | 26 MSG Min. | Fiber Board | 72 | 20G@13plf
W6 x 12 | P225 | | | | 12K3 | 24 MSG Min. | Building Units | 48 | NS | P227 | | | | 12K3 | 26 MSG Min. | Fiber Board | 48 | 20G@13plf
W6 x 12 | P230 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 48 | 20G@14plf*
W8 x 24 | P231 | | | | 12K5 | 26 MSG Min. | Fiber Board | 48 | W6 x 12 | P250 | | | Exposed Grid | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P251 | | 1 1/2 Hr. | | 10K1 | 24 MSG Min. | Fiber Board | 72 | NS | P259 | | , | | 10K1 | Metal Roof
Deck Panels | Batts and
Blankets | 60 | NS | P265 | | | | 10K1 | 20 MSG Min. | Fiber Board | 48 | NS | P266 | | | | 10K1 | Metal Roof
Deck Panels | Batts and
Blankets | 60 | NS | P268 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 72 | 20G@14plf*
W8 x 24 |
P269 | | | Fiber Board | 10K1 | 24 MSG Min. | Fiber Board | NS | W6 x 16 | P301 | | | Metal Lath | 12K5 | 22 MSG Min. | Fiber Board | 72 | NS | P404 | | | Gypsum Board | 12K3 | 24 MSG Min. | Fiber Board | 72 | 20G@13plf
W8 x 13 | P510 | | | | 10K1 | 24 MSG Min. | Fiber Board | 72 | W6 x 12 | P237 | | | Exposed Grid | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P251 | | | | 10K1 | 20 MSG Min. | Fi <mark>ber</mark> Board | 48 | NS | P266 | | 2 Hr. | Fiber Board | 10K1 | 24 MSG Min. | Fiber Board | NS | W6 x 16 | P301 | | 4 m. | Metal Lath | 12K5 | 22 MSG Min. | Fiber Board | 72 | NS | P404 | | | | 10K1 | 22 MSG Min. | Fiber Board | 72 | 20G@13plf | P514 | | | Gypsum Board | IUKT | 20 MSG Min. | I IDEI BUAIU | 48 | NS | P519 | | | Зурэшіі Боліц | 14K1 | 26 MSG Min. | Insulating
Concrete | 66 | NS | P520 | | 3 Hr. | Metal Lath | 10K1 | 28 MSG Min. | Insulating
Concrete | 48 | NS | P405 | | | | | | | | | | ^{*}Special Area Requirements ## **ROOF - CEILING ASSEMBLIES WITH SPRAY APPLIED FIRE RESISTIVE MATERIALS** | Restrained | | | Built | Up Roof | Maximum | Minimum | UL | |------------|------------|------------|---------------|----------------|---------|-----------|--------| | Assembly | Protection | Minimum | Deck | | Joist | Primary | Design | | , i | Material | Joist Size | Material | Insulation | Spacing | Support | Number | | Rating | | | Description | | (in.) | Member | Number | | 1 Hr. | SAFRM | 10K1 | 22 MSG Min. | Building Units | NS | NS | P822 | | 1 Hr. | SAFRIN | 12K3 | 22 MSG Min. | Fiber Board | NS | W8 x 20 | P824 | | | | | • | • | l . | | | | 1 Hr. | | | | Insulating | | | | | and | SAFRM | 12K5 | 28 MSG Min. | | 96 | W6 x 16 | P919 | | 1-1/2 Hr. | | | | Concrete | | | | | | | | | l | | | | | 1-1/2 Hr. | | | | | | | | | and | SAFRM | 10K1 | 22 MSG Min. | Building Units | NS | W6 x 16 | P728 | | 2 Hr. | | | | | | | | | | | | 1 | | | | | | | | 14K4 | | | | 20G@13plf | P701 | | | | 141.4 | 22 MSG Min. | Fiber Board | NS | W6 x 16 | P701 | | | | 14K4 | | | | 20G@13plf | P711 | | | | 1464 | 22 MSG Min. | Fiber Board | NS | W6 x 16 | P/11 | | | | 12K3 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P717 | | | | 10K1 | | Foamed Plastic | | 20G@13plf | P725 | | | | IUKI | 22 MSG Min. | Foamed Plastic | NS | W8 x 28 | F125 | | | | 10K1 | | Fiber Board | | 20G@13plf | P726 | | | | IUKI | 22 MSG Min. | Tibel Board | NS | W6 x 16 | 1720 | | | | 14K4 | 22 MSG Min. | Fiber Board | NO | 20G@13plf | P734 | | | | 1 | 22 WISG WITH. | - indi | NS | W6 x 16 | | | | | 14K4 | 22 MCC Min | Fiber Board | NS | 20G@13plf | P736 | | 1 Hr., | | | 22 MSG Min. | , i.b. Board | INS | W6 x 16 | | | 1-1/2 Hr. | SAFRM | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P739 | | and | OAI KII | 10K1 | 22 MSG Min. | Fiber Board | NS | W6 x 16 | P740 | | 2 Hr. | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P743 | | | | 12K3 | A 1100 HI | Fiber Board | | 20G@13plf | P801 | | | | 12110 | 22 MSG Min. | Tiber Board | NS | W6 x 16 | 1001 | | | | 10K1 | | Fiber Board | | 20G@13plf | P815 | | | | IUNI | 22 MSG Min. | i ibei Boaiu | NS | W6 x 16 | 1015 | | | | 10K1 | 22 MSG Min. | Fiber Board | NS | W6 x 16 | P816 | | | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P819 | | | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P825 | | | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P827 | | | | 401/4 | | Eibar Baard | | 20G@13plf | Booc | | | | 12K1 | 22 MSG Min. | Fiber Board | NS | W8 x 20 | P828 | | | 7 | 40144 | | Insulating | | 20G@13plf | Booc | | | 7 | 10K1 | 28 MSG Min. | Concrete | NS | W8 x 10 | P902 | | 10 P907 3plf P908 | |----------------------| | P908 | | 10 | | 10 P920 | | 13plf
10 P921 | | 16 P922 | | 13plf
10 P923 | | 13plf
10 | | 10 P926 | | 13plf
10 | | 13plf
10 P928 | | 10 P929 | | 16 P936 | | | | 16 P718 | | 13plf
16 P720 | | 16 P729 | | | | 13plf
16 | | 16 P722 | | 16 P723 | | 28 P732 | | 16 P733 | | | | | ^{*} Special Area Requirements # FLOOR - CEILING ASSEMBLIES WITH MEMBRANE PROTECTION | | | | Concr | ete | Maximum | Minimum | | |------------|----------------|--------------|-----------|--------|----------------|----------------------|--------| | Restrained | Protection | Minimum | Minimum | | Joist | Primary | UL | | Assembly | Material | Joist Size | Thickness | Туре | Spacing | Support | Design | | Rating | Material | 00131 0120 | (in.) | 1,750 | (in.) | Member | Number | | | | | () | | () | 20G@13plf | D216 | | | Acoustical | 12K1, 18LH02 | 2.5 | LW, NW | NL | W8 x 15 | D219 | | | | | | | | 20G@14plf | DETO | | | | 10K1 | 2.5 | | 48* | W6 x 12 | G205 | | 1 Hr. | Exposed Grid | 10K1 | 2.0 | NW | 72 | W6 x 12 | G208 | | | Exposed Grid | 101(1 | 2.0 | 1444 | 12 | 20G@14plf | G200 | | | | 10K1 | 2.5 | | 48* | W6 x 12 | G256 | | | Gypsum Board | 10K1 | 2.5 | NW | 48 | W8 x 24 | G548 | | | Gypsuiii Board | IONI | 2.5 | 1444 | 40 | | D216 | | | Acoustical | | | LW, NW | | 20G@13plf
W8 x 15 | | | | | 12K1, 18LH02 | 2.5 | | NL | | D219 | | | Gypsum Board | | | NW | | 20G@20plf
W8 x 28 | D502 | | | | | | | | | | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W6 x 12 | G203 | | | | | | | | | | | | | 10K1 | 2.5 | | 48* | 20G@14plf | G205 | | | | 401/4 | | | 70 | W6 x 12 | 0000 | | 4.4/0.11- | | 10K1 | 2.0 | | 72 | W6 x 12 | G208 | | 1 1/2 Hr. | | 10K1 | 2.5 | | 24 (48) | 222 2 12 15 | G213 | | | Exposed Grid | 10K1 | 2.5 | NW | 24 (48) | 20G@13plf | G228 | | | | | | | | W8 x 31 | | | | | 10K1 | 2.0 | | 24 (48) | 20G@13plf | G229 | | | | | | | | W8 x 24 | | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf | G243 | | | | | | | | W6 x 12 | | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf | G268 | | | | | | | | W8 x 31 | | | | Gypsum Board | 12K1 | 2.0 | NW | 24 (48) | NS | G502 | | | Acoustical | | | LW, NW | | 20G@13plf | D216 | | | | 12K1, 18LH02 | 2.5 | | NL | W8 x 15 | D219 | | | Gypsum Board | | | NW | | 20G@20plf | D502 | | | | | | | | W8 x 28 | | | | | 10K1 | 2.25 | | 24 (48) | W6 x 25 | G023 | | | | 8K1 | | | 24 (48) | 20G@13plf | G031 | | 2 Hr. | Concealed Grid | | 2.5 | NW | = : (• •) | W8 x 20 | | | | | 10K1 | 0 | | 30 (48) | 20G@13plf | G036 | | | | | | | | W10 x 21 | | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf | G203 | | | | 10111 | 2.0 | | = + (=0) | W6 x 12 | 3200 | | | Exposed Grid | 10K1 | 2.5 | NW | 48* | 20G@14plf | G205 | | | | | 2.5 | | 70 | W6 x 12 | 3203 | | | | 10K1 | 2.5 | | 72 | W6 x 12 | G208 | | | | 10K1 | 2.5 | I | 24 (40) | | G213 | |-------|-----------------------------|-----------------------|------|--------|---------|-----------------------|--------------| | | | | _ | | 24 (48) | VA/O v. 24 | | | | | 10K1 | 2.5 | | 24 (48) | W8 x 31 | G227 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 31 | G228 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 24 | G229 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W6 x 12 | G243 | | | | 10K1 | 2.5 | | 48* | 20G@14plf
W6 x 12 | G256 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 31 | G268 | | | | 10K1 | 2.0 | | 24 (48) | NS | G505 | | | | 10K1 | 2.5 | | 24 (48) | 20G14plf
W8 x 31 | G514 | | | Gypsum Board | 10K1 | 2.5 | NW | 24 (48) | 20G@13plf
W10 x 21 | G523 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 24 | G529 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W10 x 21 | G547 | | | | | | | | | | | | Acoustical | 12K1, 18LH02 | 3.25 | LW, NW | NL | 20G@13plf
W8 x 15 | D216
D219 | | | Concealed Grid | 10K1 | 3.5 | NW | 24 (48) | 20G@13plf
W8 x 20 | G033 | | | Conocarda Cria | 10K1 | 3.25 | | 30 (48) | 20G@13plf
W10 x 21 | G036 | | | | 10K1 | 3.5 | | 48* | 20G@14plf
W6 x 12 | G205 | | | | 10K1 | 3.5 | | 24 (48) | W6 x 12 | G213 | | 3 Hr. | Exp <mark>ose</mark> d Grid | 10K1 | 3.25 | NW | 24 (48) | 20G@13plf
W8 x 24 | G229 | | | | 10K1 | 3.5 | 1 | 48* | W6 x 12 | G256 | | | | 10K1
(22 ksi max.) | 2.63 | | 24 (48) | 20G@13plf
W8 x 31 | G268 | | | | 10K1 | 3.0 | | 24 (48) | 20G@13plf
W10 x 21 | G523 | | | Gypsum Board | 10K1 | 2.75 | NW | 24 (48) | 20G@13plf
W8 x 24 | G529 | | | | 10K1 | 3.0 | 1 | | 20G@13plf | G547 | # FLOOR - CEILING ASSEMBLIES WITH SPRAY APPLIED FIRE RESISTIVE MATERIALS | Restrained | | | Concr | ete | Maximum | Minimum | UL | |------------|------------|--------------------|-----------|--------|-------------|----------------------|--------------| | Assembly | Protection | Minimum | Minimum | | Joist | Primary | _ | | | Material | Joist Size | Thickness | Type | | Support | Design | | Rating | | | (in.) | | Spacing | Member | Number | | | | NS | 2.5 | | | | D759 | | | | 10K1 | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | NL | W8 x 28 | D780 | | | | NS | 3.25 | LW | IVL | VV0 X 20 | D782 | | | | 10K1* | 2.5 | LW | | | D925 | | | | IOICI | 3.5 | NW | | | D923 | | | | 16K6* | NS | LW, NW | 42 | 20G@20plf
W8 x 28 | G 701 | | | | 16K6 | 3.0 | LW | 50.5 | NS | G702 | | 4.11 | 0.551 | 16/6 | 3.75 | NW | 50.5 | NS | G/02 | | 1 Hr. | SAFRM | 16K6* | 2.5 | LW, NW | 42 | NS | G705 | | | | 16K6 | 3.0 | LW | E0 E | NS | G706 | | | | 16/6 | 3.75 | NW | 50.5 | NS | G/06 | | | | 16K6* | 2.5 | | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.5 | LW, NW | 42 | W8 x 28 | G709 | | | | 16K6* | 2.5 | | 42 | 20g@20plf
W8 x 24 | G801 | | | | 40164 | 3.0 | LW | 50.5 | No | 2000 | | | | 12K1 | 3.75 | NW | 50.5 | NS | G802 | | | | NS | 2.5 | | • | | D759 | | | | 1 <mark>0K1</mark> | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | NL | W8 x 28 | D780 | | | | NS | 3.25 | LW | IVL | VVO X 20 | D782 | | | | 10K1* | 3.0 | LW | | | D925 | | | | IOIL | 4.0 | NW | | | D323 | | | | 16K6* | 2.5 | LW, NW | 42 | 20G@20plf
W8 x 28 | G701 | | | | 16K6 | 3.5 | LW | 50.5 | NS | G702 | | 4.4/0.11 | CATDM | TONO | 4.5 | NW | 50.5 | INO | G/02 | | 1 1/2 Hr. | SAFRM | 16K6* | 2.5 | LW, NW | 42 | NS | G705 | | | | 16K6 | 3.5 | LW | 50.5 | NS | G706 | | | | 1000 | 4.5 | NW | 50.5 | INO | G706 | | | | 16K6* | 2.5 | | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.5 | LW, NW | 42 | W8 x 28 | G709 | | | | 16K6* | 2.5 | 1 | 42 |
20G@20plf
W8 x 24 | G801 | | | | 12K5 | 3.5 | LW | 50.5 | NS | G802 | | | | IZNO | 4.5 | NW | 50.5 | CNI | G002 | | | | NS | 2.5 | | | | D759 | |-------|---------|---------------------|------|--------|------|----------------------|------| | | | 10K1 | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | NL | W8 x 28 | D780 | | | | NS | 3.25 | LW | INL | VVO X 20 | D782 | | | | 10K1* | 3.25 | LW | | | D925 | | | | TOK! | 4.5 | NW | | | D323 | | | | 16K6* | 2.5 | LW, NW | 42 | 20G@20plf
W8 x 28 | G701 | | | | 16K6 | 4.0 | LW | 50.5 | NS | G702 | | 2 Hr. | SAFRM | 1010 | 5.25 | NW | 30.3 | 140 | 0,02 | | 2 пг. | SAFRIVI | 16K6* | 2.5 | LW,NW | 42 | NS | G705 | | | | 16K6 | 4.0 | LW | 50.5 | NS | G706 | | | | 1000 | 5.25 | NW | 30.3 | INO | 6700 | | | | 16K6* | 2.5 | | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.5 | LW, NW | 42 | W8 x 28 | G709 | | | | 16K6* | 2.5 | • | 42 | 20G@20plf
W8 x 24 | G801 | | | | 12K5 | 4.0 | LW | 50.5 | NS | G802 | | | | 1210 | 5.25 | NW | 00.0 | 140 | 3332 | | | | NS | 2.5 | | | | D759 | | | | 10K1 | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | NL | W8 x 28 | D780 | | | | NS | 3.25 | LW | | | D782 | | | | 10K1* | 4.19 | LW | | | D925 | | | | | 5.25 | NW | | 222 222 15 | | | 3 Hr. | SAFRM | 16K <mark>6*</mark> | NS | | 42 | 20G@20plf
W8 x 28 | G701 | | | | 16K6* | 2.75 | | 42 | NS | G705 | | | | 16K6* | 2.75 | LW, NW | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.75 |] | 42 | W8 x 28 | G709 | | | | 16K6* | 2.75 | | 42 | 20G@20plf
W8 x 24 | G801 | | 4 Hr. | SAFRM | 10K1 | 2.5 | LW, NW | NL | W8 x 28 | D779 | | | JAPRIVI | NS | 3.25 | LW | IAL | 110 X 20 | D782 | | | | | | | • | | | ^{*} Special Area Requirements #### **ECONOMICAL JOIST GUIDE** #### Combined K, VS, LH & DLH Series Load Table The following table is an economy guide with the Joists listed in sequence of increasing relative cost. That is, the most economical joist for given length is listed first. The economies were based on production costs and do not include bridging requirements or erection costs. HOW TO USE THE ECONOMICAL JOIST GUIDE: The specifying professional simply turns to the length required and proceeds down the allowable loads column until the first joist type in the list that will carry the required load is found. (However, additional bridging due to erection stability requirements should be taken into consideration.) This will then be the most economical joist type for the combination of length and required load. The approximate weight per foot of the joist is listed to the right of the live load. EXAMPLE: Given 40'-0" length and a required load of 300 plf. On page 126 of the table under 40', it is found that a 30K7 at 40'-0" will carry 319 plf TL. The figures shown in red are the uniform load, in pounds per lineal foot, which will produce an approximate deflection of 1/360 of the length. If a deflection limitation of 1/240 is required multiply the figures in red by 1.5. In no case shall the total load capacity of the joist be exceeded. NOTE: Length as used in the economical joist guide means: clear span + 8" for K Series and clear span + 12" for LH and DLH Series joists. You will note that the tables have been shaded to match the load tables. This shading indicates when bolted cross bridging needs to be installed per the Steel Joist Institute specification for a particular joist series. Where the joist span is in the **GREEN SHADED** area of the table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. Where the joist span is in the **BLUE SHADED** area of the table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersection. Hoist cables shall not be released until the two rows of bridging nearest the third points are completely installed. Where the joist span is in the GRAY SHADED area of the table hoisting cables shall not be released until all rows of bridging are completely installed. Total loads shown in the table are allowable total loads in ASD; the loads multiplied by 1.5 are approximately factored total loads in LRFD. # Combined K, VS, LH & DLH Series Load Table | COILID | Allowable | Joist | | Allowable | Joist | | Allowa | ble | Joist | | Allowa | ible | Joist | |----------------|------------------------------|----------------------|----------------|----------------------------------|------------|----------------|------------------|------------|------------|-----------------|------------------|------------|----------------------| | Joist
Type | Loads (PLF)
Total Uniform | Weight
(lbs./ft.) | Joist
Type | Loads (PLF)
Total Uniform | Weight | Joist
Type | Loads (
Total | | Weight | Joist
Type | Loads (
Total | | Weight
(lbs./ft.) | | | 10' LENGTH | | 20 | ' LENGTH (Cor | nt.) | 24 | 4' LENGTH | (Co | nt.) | 26 | ' LENGTH | I (Con | ıt.) | | 10K 1 | 550 550 | 5.0 | 16K2 | 368 297 | 5.5 | 16K2 | 254 | 170 | 5.5 | 24K6 | 543 | 493 | 8.9 | | | 447 I ENOTU | | 16K3
18K3 | 410 330
463 423 | 6.2
6.5 | 16K3
18K3 | 283
320 | 189
242 | 6.1
6.5 | 24K7
20LH4 | 550
574 | 499
428 | 9.2
11 | | | 11' LENGTH | | 16K4 | 493 386 | 7.0 | 16K4 | 340 | 221 | 6.9 | 18LH4 | 604 | 403 | 12 | | 10K 1 | 550 542 | 5.0 | 16K5 | 550 426 | 7.5 | 20K3
18K4 | 357
385 | 302
284 | 6.7
7.2 | 20LH5
18LH5 | 616
684 | 459
454 | 11
13 | | | 401 ENOTH | | | 21' LENGTH | | 20K4 | 430 | 353 | 7.2 | 20LH6 | 822 | 606 | 15 | | | 12' LENGTH | | | ZI LLINGIII | | 18K5 | 434 | 318 | 7.7 | 18LH7 | 840 | 553 | 16 | | 10K 1 | 550 455 | 5.0 | 12K1
14K1 | 218 123
257 170 | 5.0
5.2 | 18K6
20K5 | 473
485 | 345
396 | 8.5
8.2 | 18LH8
20LH7 | 876
878 | 577
647 | 16
16 | | | 40' LENGTH | | 12K3 | 273 153 | 5.5 | 24K6 | 550 | 544 | 7.7 | 18LH9 | 936 | 616 | 17 | | | 13' LENGTH | | 14K3 | 322 212 | 5.7 | 18LH3
20LH4 | 562
621 | 409
503 | 10
10 | 20LH9
20LH10 | 990
1068 | 729
786 | 17
18 | | 10K 1 | 479 363 | 5.0 | 16K2
16K3 | 333 <u>255</u>
371 <u>285</u> | 5.5
6.3 | 18LH4 | 655 | 474 | 11 | 202 | 1000 | | | | 12K 1 | 550 <mark>510</mark> | 5.0 | 18K3 | 420 364 | 6.6 | 20LH5
18LH5 | 668
739 | 540
534 | 11
12 | | 27' LEN | GTH | | | | 14' LENGTH | | 16K4
20K3 | 447 333
468 453 | 7.0
6.7 | 18LH6 | 875 | 619 | 15 | 14K1 | 154 | 79 | 5.1 | | | | | 16K5 | 503 373 | 7.5 | 20LH6 | 892 | 713 | 15 | 16K2 | 200 | 119 | 5.5 | | 10K 1
14K 1 | 412 289
550 550 | 5.0
5.2 | 18K4
20K4 | 506 426
550 520 | 7.2
7.6 | 18LH7
18LH8 | 908
946 | 650
679 | 15
16 | 16K3
18K3 | 223
252 | 132
169 | 5.9
6.3 | | | | 0.2 | 2014 | 330 320 | 7.0 | 20LH7 | 951 | 761 | 15 | 16K4 | 268 | 155 | 6.8 | | | 15' LENGTH | | | 22' LENGTH | | 20LH8
18LH9 | 980
1014 | 787
725 | 16
17 | 20K3
18K4 | 281 | 211 | 6.6 | | 10K 1 | 358 23 4 | 5.0 | 12K1 | 100 106 | 5.0 | 20LH9 | 1073 | 857 | 16 | 20K4 | 303
339 | 198
247 | 7.0
7.4 | | 12K 1 | 434 344 | 5.0 | 14K1 | 199 106
234 147 | 5.0
5.1 | 20LH10 | 1158 | 924 | 17 | 18K5 | 342 | 222 | 7.7 | | 14K 1
14K 3 | 511 475
550 507 | 5.2
5.9 | 12K3 | 249 132 | 5.5 | | 25' LENG | этн | | 22K4
20K5 | 374
382 | 301
277 | 8.0
8.2 | | 14K 3 | 550 507 | 5.9 | 14K3
16K2 | 293 184
303 222 | 5.6
5.5 | | 25 LLIN | 3111 | | 20K6 | 416 | 301 | 8.8 | | | 16' LENGTH | | 16K3 | 337 247 | 6.2 | 14K1 | 180 | 100 | 5.1 | 22K5 | 422 | 337 | 8.7 | | 1016.1 | | 5.0 | 18K3
16K4 | 382 316
406 289 | 6.5
6.9 | 16K2
16K3 | 234
260 | 150
167 | 5.5
5.9 | 24K6
26K6 | 503
547 | 439
519 | 8.6
8.9 | | 10K 1
12K 1 | 313 192
380 282 | 5.0
5.0 | 20K3 | 426 393 | 6.7 | 18K3 | 294 | 214 | 6.3 | 26K7 | 550 | 522 | 9.1 | | 14K 1 | 448 390 | 5.2 | 18K4 | 460 370 | 7.2 | 16K4
20K3 | 313
329 | 195
266 | 6.9
6.7 | 20LH4
18LH4 | 566
571 | 406
367 | 11
12 | | 12K 3
14K 3 | 476 351
550 467 | 5.7
5.9 | 20K4
18K5 | 514 461
518 414 | 7.6
7.7 | 18K4 | 355 | 250 | 7.1 | 20LH5 | 609 | 437 | 12 | | 1410 | 330 407 | 0.0 | 22K6 | 550 548 | 7.5 | 16K6 | 384 | 238
281 | 8.1
7.7 | 18LH5 | 648 | 414
561 | 14
15 | | | 17' LENGTH | | 18LH2
18LH3 | 554 439
614 488 | 8.8
10 | 18K5
16K7 | 400
428 | 263 | 8.6 | 20LH6
20LH7 | 791
845 | 599 | 16 | | 10K 1 | 277 159 | 5.0 | 18LH4 | 71 <mark>5 566</mark> | 11 | 18K6 | 435 | 305 | 8.5 | 20LH8 | 873 | 619 | 16 | | 12K 1 | 336 234 | 5.0 | 18LH5 | 808 637 | 12 | 20K5
18K7 | 446
485 | 350
337 | 8.2
9.0 | 20LH9
20LH10 | 953
1028 | 675
724 | 17
19 | | 14K 1 | 395 324 | 5.2 | 18LH6
18LH7 | 955 738
992 776 | 14
15 | 20K6 | 486 | 380 | 8.9 | | | | | | 12K 3
16K 2 | 420 291
512 488 | 5.7
5.5 | 18LH8 | 1034 810 | 15 | 16K9
24K6 | 514
550 | 311
520 | 10
8.6 | | 28' LEN | GTH | | | 16K 3 | 550 526 | 6.3 | 18LH9 | 1108 864 | 16 | 20LH4 | 596 | 463 | 10 | 14K1 | 143 | 70 | 5.1 | | | 18' LENGTH | | | 23' LENGTH | | 18LH4 | 628 | 436 | 11 | 16K2 | 186 | 106 | 5.5 | | | 10 LENGIH | | | | | 20LH5
18LH5 | 641
709 | 497
492 | 11
13 | 16K3
18K3 | 207
234 | 118
151 | 5.8
6.2 | | 10K 1 | 246 134 | 5.0 | 14K1
12K3 | 214 1 <mark>28</mark>
227 116 | 5.1
5.5 | 20LH6 | 855 | 656 | 15 | 16K4 | 249 | 138 | 6.6 | | 12K 1
14K 1 | 299 197
352 272 | 5.0
5.2 | 16K2 | 277 194 | 5.5 | 18LH7
18LH8 | 872
908 | 599
625 | 16
16 | 20K3 | 261 | 189 | 6.7 | | 12K 3 | 374 245 | 5.5 | 16K3
18K3 | 308 216 349 27 6 | 6.0
6.6 | 20LH7 | 912 | 701 | 16 | 16K5
18K4 | 281
282 | 155
177 | 7.4
7.2 | | 14K 3
16K 2 | 441 339 456 409 | 5.8
5.5 | 16K4 | 371 252 | 7.0 |
20LH8
18LH9 | 941
973 | 724
667 | 16
17 | 20K4 | 315 | 221 | 7.5 | | 16K 3 | 508 456 | 6.3 | 20K3 | 389 344 | 6.7
7.2 | 20LH9 | 1030 | 789 | 17 | 18K5
18K6 | 318
346 | 199
216 | 7.7
8.5 | | 14K 4 | 530 397 | 6.7
6.9 | 18K4
20K4 | 420 323
469 402 | 7.2 | 20LH10 | 1111 | 851 | 18 | 20K5 | 355 | 248 | 8.2 | | 14K 6 | 550 408 | 0.9 | 18K5 | 473 362 | 7.7 | | 26' LENG | 2TH | | 22K5
26K5 | 392
466 | 302
427 | 8.8
8.1 | | | 19' LENGTH | | 22K6
18LH3 | 550 518
587 446 | 7.7
10 | | | | | 24K6 | 467 | 393 | 8.5 | | 10K1 | | 5.0 | 18LH4 | 684 517 | 11 | 14K1 | 166 | 83 | 5.1 | 22K7 | 475
508 | 364
464 | 9.2 | | 10K1
12K1 | 221 113
268 167 | 5.0
5.0 | 20LH5
18LH5 | 697 589
772 582 | 11
13 | 16K2
16K3 | 216
240 | 133
148 | 5.5
5.9 | 26K6
28K6 | 508
548 | 464
541 | 8.9
9.2 | | 14K1 | 315 230 | 5.2 | 18LH6 | 913 674 | 15 | 18K3 | 272 | 190 | 6.4 | 28K7 | 550 | 543 | 9.2 | | 12K3
16K2 | 335 207
408 3 47 | 5.6
5.5 | 18LH7
20LH8 | 949 709 | 15
15 | 16K4
20K3 | 289
304 | 173
236 | 6.8
6.7 | 20LH4
20LH5 | 558
602 | 386
416 | 12
13 | | 16K3 | 455 <mark>3</mark> 86 | 6.3 | 20LH8
18LH9 | 1024 858
1059 790 | 16 | 18K4 | 328 | 222 | 7.2 | 18LH5 | 614 | 378 | 14 | | 18K3
16K4 | 514 494
54 7 452 | 6.6
7.0 | 20LH9 | 1121 <mark>935</mark> | 16 | 20K4
18K5 | 366
369 | 277
249 | 7.6
7.7 | 20LH6
20LH7 | 763
814 | 521
556 | 15
16 | | 16K5 | 550 455 | 7.0 | 20LH10 | 1209 1008 | 17 | 22K4 | 404 | 338 | 8.0 | 20LH8 | 842 | 575 | 17 | | | 22/1-77 | | | 24' LENGTH | | 20K5 | 412 | 310 | 8.2 | 20LH9 | 918 | 626 | 18 | | | 20' LENGTH | | 4.4151 | | | 20K6
22K5 | 449
455 | 337
379 | 8.9
8.8 | 20LH10 | 991 | 673 | 20 | | 12K 1 | 241 142 | 5.0 | 14K1
12K3 | 196 113
208 101 | 5.1
5.6 | 26K5 | 542 | 535 | 8.8 | | | | | | 14K 1 | 284 197 | 5.2 | | | 5.0 | | | | | | | | | | 12K 3 | 302 177 | 5.5 | | | | | | | | | | | | | | Joist
Type | Allowa
Loads
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | Allow
Loads
Total | rable
(PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | Allowa
Loads
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | Allow
Loads
Total | | Joist
Weight
(lbs./ft.) | |----|---------------|--------------------------|-------------|-------------------------------|----------------|---------------------------|---------------------------|-------------------------------|------------------|--------------------------|------------|-------------------------------|------------------|-------------------------|--------------------|-------------------------------| | | | 29' LEN | IGTH | | 31 | ' LENGTI | d (Con | t.) | 34 | ' LENGTH | l (Cor | nt.) | 37 | " LENGTI | l (Cor | it.) | | | 6K3 | 193 | 106 | 5.9 | 24LH7 | 727 | 545 | 15 | 24K9 | 423 | 286 | 10
10 | 26K5 | 265 | 183 | 7.9
8.3 | | | 8K3
6K4 | 218
232 | 136
124 | 6.2
6.7 | 24LH8
24LH9 | 776
913 | 579
677 | 16
19 | 28K8
28K9 | 456
496 | 364
395 | 11 | 24K6
28K6 | 266
312 | 169
232 | 8.7 | | | 0K3 | 243 | 170 | 6.6 | 24LH10 | 965 | 718 | 20 | 28K10 | 516 | 410 | 11 | 26K7 | 322 | 221 | 9.1 | | | 8K4 | 263 | 159 | 7.0 | 24LH11 | 1017 | 752 | 21 | 28LH6 | 552 | 443 | 13 | 28K7 | 348 | 257 | 9.3 | | | 0K4 | 293 | 199 | 7.4 | | | | | 28LH7 | 624 | 499 | 14 | 30K7 | 373 | 297 | 9.5 | | | 8K5 | 296 | 179 | 7.7 | | 32' LEN | GTH | | 28LH8 | 668 | 533 | 15 | 28K8 | 384 | 282 | 9.9 | | | 2K4 | 324 | 242 | 7.8 | | <u> </u> | <u> </u> | | 24LH8 | 707 | 480 | 17 | 26K9 | 387 | 262 | 10
10 | | | 0K5 | 330 | 223 | 8.1 | 16K2 | 142 | 71 | 5.5 | 28LH9 | 823 | 656 | 17 | 30K8 | 413 | 325 | | | | 2K5
6K5 | 365
434 | 272
384 | 8.7
8.0 | 16K3 | 158 | 79 | 5.8 | 24LH9
28LH10 | 832
900 | 562
714 | 20
19 | 28K9
30K9 | 418
449 | 305
352 | 11 | | | 4K6 | 435 | 354 | 8.4 | 18K3
20K4 | 178 | 101 | 6.1 | 28LH11 | 965 | 763 | 20 | 30K10 | 474 | 374 | 12 | | | 8K6 | 511 | 486 | 9.1 | 18K5 | 240
242 | 147
132 | 7.2
7.6 | 28LH12 | 1060 | 835 | 23 | 28LH6 | 507 | 373 | 13 | | | 8K7 | 550 | 522 | 9.5 | 20K5 | 271 | 165 | 7.9 | 28LH13 | 1105 | 872 | 23 | 24LH6 | 530 | 331 | 15 | | | BLH5 | 581 | 345 | 14 | 24K4 | 290 | 215 | 8.1 | | | | | 28LH7 | 573 | 421 | 15 | | | 0LH5 | 595 | 395 | 13 | 22K5 | 299 | 201 | 8.4 | | 35' LEN | GTH | | 24LH7 | 588 | 367 | 16 | | | BLH6
4LH6 | 648
708 | 377
567 | 15
14 | 22K6 | 326 | 219 | 8.4 | | | | | 28LH8
24LH8 | 614
622 | 449
38 8 | 16
17 | | | 4LH7 | 708
778 | 623 | 15 | 26K5 | 356 | 285 | 8.0 | 18K3 | 149 | 77 | 6.1 | 28LH9 | 755 | 553 | 18 | | | 0LH7 | 786 | 518 | 16 | 24K6
26K6 | 357
387 | 262
309 | 8.5
8.6 | 20K3
18K4 | 166
179 | 96
90 | 6.5
6.9 | 28LH10 | 826 | 602 | 21 | | | 4LH8 | 830 | 662 | 16 | 28K6 | 418 | 361 | 8.9 | 20K4 | 200 | 112 | 7.3 | 28LH11 | 886 | 643 | 21 | | | 4LH9 | 977 | 775 | 18 | 22K9 | 436 | 287 | 10 | 20K6 | 246 | 137 | 8.7 | 28LH12 | 974 | 704 | 23 | | | 4LH10 | 1033 | 822 | 19 | 28K7 | 466 | 400 | 9.5 | 26K5 | 297 | 217 | 7.9 | 28LH13 | 1015 | 735 | 25 | | 24 | 4LH11 | 1088 | 861 | 20 | 26K8 | 477 | 375 | 9.9 | 26K6 | 323 | 236 | 8.5 | | | | | | | | 2011 51 | | | 28K8 | 515 | 433 | 10 | 28K6 | 349 | 275 | 8.7 | | 38' LEN | GTH | | | | | 30' LEN | IGTH | | 28K9 | 549 | 463 | 11 | 26K7 | 360 | 261 | 9.0 | 001/0 | 4.44 | 74 | 0.0 | | 10 | 8K3 | 203 | 123 | 6.1 | 24LH6
24LH7 | 641
704 | 465
511 | 14
15 | 28K7
28K8 | 389
430 | 305
333 | 9.4
9.9 | 20K3
20K4 | 141
170 | 74
87 | 6.3
7.2 | | | 6K4 | 216 | 112 | 6.6 | 24LH8 | 752 | 543 | 16 | 26K9 | 433 | 310 | 10 | 24K6 | 252 | 156 | 8.3 | | | 0K3 | 227 | 153 | 6.5 | 24LH9 | 884 | 635 | 19 | 28K9 | 468 | 361 | 11 | 28K6 | 296 | 214 | 8.6 | | | 8K4 | 245 | 144 | 6.9 | 24LH10 | 935 | 674 | 20 | 28K10 | 501 | 389 | 11 | 26K7 | 305 | 204 | 9.0 | | | 0K4 | 274 | 179 | 7.3 | 24LH11 | 985 | 705 | 20 | 28LH6 | 537 | 417 | 13 | 28K7 | 329 | 237 | 9.2 | | | 8K5 | 276 | 161 | 7.7 | | | | | 28LH7 | 606 | 471 | 14 | 30K7 | 354 | 274 | 9.5 | | | 0K5
0K6 | 308
336 | 201
218 | 8.0
8.7 | | 33' LEN | GTH | | 28LH8
24LH8 | 649
677 | 503
447 | 15
17 | 28K8
26K9 | 364
367 | 260
241 | 9.9
10 | | | 2K6 | 371 | 266 | 8.2 | 401/0 | 400 | 000 | 0.4 | 28LH9 | 799 | 618 | 18 | 30K8 | 391 | 300 | 10 | | | 6K5 | 405 | 346 | 8.0 | 18K3
20K4 | 168
2 <mark>2</mark> 6 | 92
134 | 6.1
7.3 | 28LH10 | 874 | 673 | 20 | 28K9 | 396 | 282 | 11 | | | 4K6 | 406 | 319 | 8.4 | 20K4
22K4 | 249 | 164 | 7.3 | 28LH11 | 938 | 719 | 21 | 30K9 | 426 | 325 | 11 | | | 6K6 | 441 | 377 | 8.8 | 20K5 | 254 | 150 | 8.1 | 28LH12 | 1030 | 787 | 23 | 30K10 | 461 | 353 | 11 | | | BK6 | 477 | 439 | 9.0 | 24K4 | 273 | 196 | 8.3 | 28LH13 | 1073 | 822 | 24 | 28LH6 | 494 | 354 | 13 | | | 6K7
8K7 | 492 | 417
486 | 9.2
9.5 | 20K6 | 277 | 163 | 8.7 | | | | | 24LH6 | 504 | 306 | 15
15 | | | 6K8 | 531
544 | 457 | 10 | 22K5 | 281 | 183 | 8.5 | | 36' LEN | GTH | | 28LH7
24LH7 | 558
565 | 399
343 | 16 | | | 6K9 | 550 | 459 | 10 | 26K5
24K6 | 334
335 | 259
239 | 8.0
8.3 | 18K3 | 141 | 70 | 6.1 | 28LH8 | 597 | 426 | 16 | | | 0LH5 | 571 | 366 | 13 | 26K6 | 364 | 282 | 8.6 | 20K3 | 157 | 88 | 6.4 | 28LH9 | 735 | 524 | 19 | | | BLH6 | 605 | 340 | 15 | 28K6 | 393 | 329 | 8.8 | 18K4 | 169 | 82 | 6.9 | 28LH10 | 804 | 570 | 20 | | | 4LH6 | 684 | 529 | 14 | 26K7 | 406 | 312 | 9.1 | 20K4 | 189 | 103 | 7.2 | 28LH11 | 863 | 609 | 22 | | | 4LH7 | 752 | 582 | 15 | 28K7 | 438 | 364 | 9.4 | 18K5 | 191 | 92 | 7.5 | 28LH12 | 948 | 667 | 23 | | | 4LH8
4LH9 | 802
944 | 618
724 | 16
18 | 28K8 | 484 | 399 | 10 | 24K6 | 281 | 183 | 8.3 | 28LH13 | 988 | 696 | 26 | | | 4LH10 | 998 | 768 | 19 | 26K9
28K9 | 488 | 370 | 11 | 22K7 | 286 | 169 | 8.7 | | 20' L EN | СТЦ | | | | 4LH11 | 1052 | 804 | 21 | 28K10 | 527
532 | 432
435 | 11
11 | 24K7
28K6 | 313
330 | 203
252 | 8.8
8.8 | | 39' LEN | СІН | | | | | | | | 24LH6 | 621 | 437 | 15 | 26K7 | 340 | 240 | 9.1 | 20K3 | 133 | 69 | 6.4 | | | | 31' LEN | IGTH | | 24LH7 | 683 | 480 | 16 | 24K8 | 346 | 222 | 9.5 | 20K4 | 161 | 81 | 7.3 | | | | | | | 24LH8 | 729 | 510 | 16 | 28K7 | 367 | 280 | 9.4 | 20K5 | 181 | 90 | 7.9 | | | 6K4 | 203 | 101 | 6.6 | 24LH9 | 857 | 597 | 19 | 26K8 | 376 | 263 | 9.8 | 28K6 | 280 | 198 | 8.6 | | | 0K3 | 212 | 138 | 6.6 | 24LH10 | 906 | 633 | 20 | 30K7 | 395 | 323 | 9.6 | 26K7 | 289 | 188 | 9.0 | | | 8K4
0K4 | 229
256 | 130
162 | 6.9
7.4 | 24LH11 | 955 | 663 | 22 | 28K9
28K10 | 442
487 | 332
366 | 11
12 | 28K7
30K7 | 313
336 | 219
253 | 9.1
9.5 | | | 8K5 | 258 | 146 | 7.7 | | 24' LEN | СТЦ | | 28LH6 | 521 | 394 | 13 | 28K8 | 346 | 240 | 9.9 | | | 2K4 | 283 | 198 | 7.8 | | 34' LEN | СП | | 28LH7 | 589 | 445 | 14 | 26K9 | 348 | 223 | 10 | | | 0K5 | 289 | 182 | 8.1 | 18K3 | 158 | 84 | 6.1 | 28LH8 | 631 | 475 | 15 | 30K8 | 371 | 277 | 10 | | | 4K4 | 310 | 237 | 8.4 | 20K3 | 176 | 105 | 6.4 | 24LH8 | 649 | 416 | 17 | 28K9 | 376 | 260 | 11 | | | 0K6 | 314 | 198 | 8.8 | 18K4 | 190 | 98 | 6.9 | 28LH9 | 777 | 584 | 18 | 30K9 | 404 | 300 | 11 | | | 2K5
2K6 | 319
347 | 222
241 | 8.7
8.3 | 18K6 | 233 | 120 | 8.2 | 28LH10
28LH11 | 850
911 | 636
680 | 19
21 | 26K10
30K10 | 413
449 | 262
333 | 12
12 | | | 2K6
6K5 | 379 | 314 | 8.1 | 24K4 | 257 | 179 | 8.1 | 28LH12 | 1001 | 744 | 23 | 32LH7 | 486 | 388 | 13 | | | 4K6 | 380 | 289 | 8.6 | 20K6
22K5 | 261
265 | 149
167 | 8.6
8.4 | 28LH13 | 1043 | 777 | 24 | 32LH8 | 528 | 421 | 14 | | 22 | 2K7 | 387 | 267 | 8.8 | 26K5 | 315 | 237 | 7.9 | | | | | 28LH7 | 543 | 379 | 15 | | | 8K6 | 446 | 397 | 9.0 | 26K6 | 343 | 257 | 8.5 | | 37' LEN | GTH | | 32LH9 | 662 | 526 | 17 | | | 2K9 | 465 | 316 | 10 | 28K6 | 370 | 300 | 8.8 | | | | | 32LH10 |
732 | 581 | 18 | | | 8K8
4LH6 | 550
662 | 480
495 | 10
14 | 26K7 | 382 | 285 | 9.1 | 20K3 | 148 | 81 | 6.4 | 32LH11
28LH11 | 802
841 | 635
578 | 20
22 | | | ∓LI IU | 002 | 770 | 14 | 28K7 | 412 | 333 | 9.4 | 20K4 | 179 | 95 | 7.3 | ZULITIT | 041 | 570 | 22 | | | | | | | | | | | | | | | | | · - | _ | | Joist
Type | Allow
Loads
Total | | Joist
Weight
n (lbs./ft.) | Joist
Type | Allow
Loads
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
Is (PLF)
Unifori | Joist
Weight
m (lbs/ft.) | Joist
Type | Allow
Loads
Total | | Joist
Weight
1 (lbs./ft.) | |------------------|-------------------------|------------|---------------------------------|------------------|---------------------------|------------|-------------------------------|------------------|-------------|------------------------------|--------------------------------|------------------|-------------------------|---------------------|---------------------------------| | 39 |) LENGTH | d (Coi | nt.) | 42 | ' LENGTH | l (Cor | nt.) | | 45' LEN | IGTH | | 47 | " LENGT | l (Co | nt.) | | 32LH12 | 941 | 742 | 23 | 28K10 | 384 | 245 | 12 | 24K4 | 146 | 76 | 7.8 | 36LH12 | 731 | 541 | 23 | | 28LH13
32LH13 | 962
1050 | 661
825 | 26
25 | 30K10
30K11 | 413
417 | 282
284 | 12
12 | 26K5
26K6 | 179
194 | 101
110 | 7.9
8.5 | 32LH12
36LH13 | 780
859 | 510
634 | 26
26 | | 32LH14 | 1030 | 850 | 26 | 32LH7 | 451 | 334 | 14 | 28K6 | 210 | 128 | 8.6 | 32LH13 | 870 | 566 | 28 | | 32LH15 | 1117 | 878 | 26 | 32LH8 | 490 | 362 | 15 | 26K7 | 217 | 122 | 9.0 | 36LH14 | 947 | 696 | 29 | | | | | | 28LH7 | 505 | 326 | 16 | 24K8 | 220 | 113 | 9.5 | 36LH15 | 999 | 7 33 | 30 | | | 40' LEN | GTH | | 28LH8
32LH9 | 540
614 | 348
453 | 16
17 | 28K7
24K10 | 234
285 | 142
144 | 9.2 | | 401 50 | OTIL | | | 20K3 | 127 | 64 | 6.4 | 32LH10 | 679 | 500 | 19 | 26K10 | 310 | 170 | 12 | | 48' LEN | GIH | V | | 20K4 | 153 | 75 | 7.2 | 32LH11 | 744 | 547 | 21 | 28K10 | 334 | 198 | 12 | 24K4 | 128 | 63 | 7.9 | | 22K4 | 169 | 91 | 7.6 | 32LH12
32LH13 | 874
974 | 639
710 | 24
26 | 30K10
30K11 | 359
389 | 229
246 | 12
13 | 26K5 | 157 | 83 | 7.8 | | 20K5 | 172
253 | 84 | 7.9
8.9 | 32LH14 | 1003 | 732 | 27 | 36LH8 | 414 | 323 | 13 | 26K6
24K7 | 171 | 90 | 8.4 | | 24K7
26K7 | 255
275 | 148
174 | 9.0 | 32LH15 | 1037 | 756 | 28 | 32LH7 | 421 | 291 | 14 | 28K6 | 175
184 | 85
105 | 8.9
8.6 | | 28K7 | 297 | 203 | 9.1 | | | | | 32LH8 | 457 | 315 | 15 | 24K8 | 194 | 93 | 9.6 | | 30K7 | 319 | 234 | 9.4 | | 43' LEN | GTH | | 36LH9
36LH10 | 531
584 | 412
455 | 16 | 24K10 | 250 | 118 | 12 | | 28K8
26K9 | 328
331 | 222
207 | 9.9
10 | 22K4 | 146 | 73 | 7.5 | 36LH11 | 638 | 495 | 19 | 26K10
28K10 | 2 72
294 | 140
1 6 3 | 12
12 | | 28K9 | 357 | 241 | 11 | 24K4 | 160 | 88 | 8.0 | 36LH12 | 763 | 590 | 21 | 30K10 | 315 | 188 | 12 | | 30K9 | 384 | 278 | 11 | 26K5 | 196 | 116 | 7.9 | 32LH12
36LH13 | 815
898 | 556
692 | 26
25 | 30K12 | 365 | 216 | 14 | | 26K10 | 393 | 243 | 12 | 30K7 | 276 | 188 | 9.3 | 36LH14 | 990 | 760 | 28 | 36LH8 | 388 | 284 | 14 | | 30K10
32LH7 | 438
474 | 315
368 | 12
13 | 26K9
30K8 | 286
305 | 166
206 | 10
10 | 36LH15 | 1043 | 800 | 29 | 28LH7
32LH8 | 394
428 | 222
277 | 16
16 | | 32LH8 | 514 | 400 | 14 | 28K9 | 309 | 194 | 11 | | | | | 36LH9 | 497 | 362 | 17 | | 28LH7 | 529 | 360 | 15 | 30K9 | 332 | 223 | 11 | | 46' LEN | IGTH | | 36LH10 | 548 | 400 | 18 | | 32LH9 | 645 | 500 | 16 | 26K10
28K10 | 339
367 | 195
228 | 12
12 | 24K4 | 139 | 71 | 7.9 | 36LH11
32LH11 | 598 | 435 | 20 | | 32LH10
32LH11 | 713
782 | 552
604 | 18
20 | 30K10 | 394 | 263 | 12 | 26K5 | 171 | 95 | 7.9 | 36LH12 | 650
715 | 418
518 | 23
23 | | 32LH12 | 918 | 705 | 23 | 30K11 | 407 | 270 | 13 | 26K6 | 186 | 103 | 8.5 | 32LH12 | 764 | 489 | 27 | | 32LH13 | 1024 | 784 | 26 | 36LH8 | 434 | 354 | 13 | 28K6 | 201 | 120 | 8.6 | 36LH13 | 841 | 607 | 26 | | 32LH14
32LH15 | 1054
1089 | 807
834 | 26
27 | 32LH7
32LH8 | 441
478 | 318
346 | 14
15 | 26K7
24K8 | 207
211 | 114
106 | 9.1
9.6 | 36LH14
36LH15 | 927
978 | 667
703 | 29
31 | | JZLIIIJ | 1009 | 004 | 21 | 36LH9 | 555 | 451 | 16 | 26K8 | 229 | 125 | 9.7 | 40LH15 | 1009 | 810 | 31 | | | 41' LEN | GTH | | 36LH10 | 612 | 499 | 17 | 26K10 | 296 | 159 | 12 | 40LH16 | 1112 | 890 | 34 | | | | | | 36LH11
32LH11 | 668
727 | 543
522 | 18
21 | 28K10
30K10 | 320
344 | 186
214 | 12
12 | | 4011 - | | | | 22K4
24K4 | 161
176 | 85
101 | 7.6
8.0 | 36LH12 | 799 | 647 | 21 | 30K11 | 380 | 236 | 14 | | 49' LEN | GTH | | | 24K7 | 241 | 137 | 8.9 | 32LH12 | 853 | 610 | 25 | 36LH8 | 405 | 309 | 13 | 26K5 | 150 | 78 | 7.9 | | 26K7 | 262 | 162 | 9.0 | 36LH13
32LH13 | 940 | 758 | 25 | 32LH7
28LH7 | 412 | 278 | 14 | 26K6 | 164 | 85 | 8.4 | | 24K8 | 266 | 150 | 9.5 | 36LH14 | 95 <mark>2</mark>
1036 | 678
833 | 27
28 | 32LH8 | 427
447 | 251
302 | 16
16 | 28K6 | 177 | 99 | 8.6 | | 24K9
30K7 | 290
303 | 162
217 | 10
9.5 | 36LH15 | 1092 | 877 | 29 | 36LH9 | 519 | 394 | 16 | 26K7
28K7 | 183
197 | 94
110 | 9.1
9.3 | | 26K9 | 315 | 192 | 10 | | | | | 36LH10 | 572 | 435 | 18 | 26K8 | 202 | 103 | 9.7 | | 28K9 | 340 | 224 | 11 | | 44' LEN | GTH | | 36LH11
32LH11 | 624
679 | 474
455 | 19
22 | 30K7 | 212 | 127 | 9.4 | | 30K9
26K10 | 365
374 | 258
225 | 11 | 22K4 | 139 | 68 | 7.5 | 36LH12 | 747 | 564 | 23 | 28K8
26K9 | 218
220 | 120
112 | 9.9
10 | | 30K10 | 427 | 300 | 12 | 24K4 | 153 | 82 | 8.1 | 32LH12 | 797 | 532 | 26 | 30K8 | 234 | 139 | 10 | | 32LH7 | 462 | 351 | 13 | 22K5 | 157 | 76 | 8.3 | 36LH13 | 878 | 662 | 26 | 30K10 | 303 | 177 | 12 | | 32LH8 | 502 | 380 | 14 | 26K5 | 187 | 108 | 7.9 | 36LH14
36LH15 | 968
1020 | 727
765 | 28
30 | 30K11 | 347 | 202 | 14 | | 28LH7
32LH9 | 516
6 30 | 342
476 | 16
17 | 26K6
24K7 | 204
209 | 110 | 8.5
8.9 | | .020 | | | 30K12
28LH7 | 357
379 | 207
209 | 14
16 | | 32LH10 | 696 | 525 | 19 | 28K6 | 220 | 137 | 8.6 | | 47' LEN | IGTH | | 32LH8 | 419 | 266 | 16 | | 32LH11 | 762 | 574 | 21 | 30K8 | 291 | 192 | 10 | 0.4144 | 400 | | | 36LH9 | 487 | 347 | 17 | | 28LH11
32LH12 | 799
895 | 523
671 | 23
23 | 28K9
30K9 | 295
317 | 181
208 | 11
11 | 24K4
26K5 | 133
164 | 67
89 | 7.9
7.9 | 36LH10
36LH11 | 536
586 | 383
417 | 18 | | 32LH12 | 998 | 746 | 26 | 26K10 | 324 | 182 | 12 | 26K6 | 178 | 96 | 8.5 | 32LH11 | 637 | 401 | 20
23 | | 32LH14 | 1028 | 768 | 26 | 28K10 | 350 | 212 | 12 | 28K6 | 192 | 112 | 8.6 | 36LH12 | 701 | 497 | 24 | | 32LH15 | 1062 | 794 | 28 | 30K10 | 376 | 245 | 12 | 24K8 | 202 | 99 | 9.6 | 32LH12 | 748 | 469 | 27 | | | 401 EN | OTIV | | 30K11
36LH8 | 398
424 | 258
338 | 13
13 | 24K10
26K10 | 261
284 | 126
149 | 12
12 | 36LH13
32LH13 | 824
834 | 583
521 | 28
30 | | | 42' LEN | GIH | | 32LH7 | 431 | 304 | 14 | 28K10 | 306 | 174 | 12 | 32LH14 | 859 | 536 | 31 | | 22K4 | 153 | 79 | 7.6 | 32LH8 | 467 | 330 | 15 | 30K10 | 329 | 201 | 12 | 36LH14 | 908 | 640 | 30 | | 24K7 | 229 | 127 | 8.9 | 36LH9
36LH10 | 543
598 | 431
476 | 16
17 | 36LH7
30K11 | 360
372 | 270
226 | 12
14 | 36LH15
40LH15 | 958 | 674 | 31
31 | | 26K7 | 249 | 150
139 | 9.0 | 36LH11 | 653 | 518 | 18 | 36LH8 | 372
396 | 296 | 13 | 40LH15
40LH16 | 988
1089 | 777
854 | 34 | | 24K8
28K7 | 253
269 | 139 | 9.6
9.2 | 36LH12 | 781 | 617 | 21 | 32LH7 | 403 | 266 | 15 | | | | | | 26K8 | 275 | 164 | 9.7 | 32LH12 | 834 | 582 | 25 | 28LH7 | 410 | 236 | 16 | | 50' LEN | GTH | | | 30K7 | 289 | 202 | 9.5 | 36LH13
36LH14 | 918
1012 | 724
795 | 25
28 | 32LH8
28LH8 | 437
438 | 289
525 | 16
17 | 001/5 | | | 7.0 | | 26K9
30K8 | 300
320 | 178
221 | 10
10 | 36LH15 | 1067 | 837 | 29 | 36LH9 | 508 | 377 | 17 | 26K5
26K6 | 144
157 | 73
80 | 7.9
8.5 | | 28K9 | 324 | 208 | 11 | | | | | 36LH10 | 559 | 417 | 18 | 26K7 | 175 | 89 | 9.1 | | Looko | 348 | 240 | 11 | 1 | | | | 36LH11
32LH11 | 611
664 | 454
436 | 20
22 | 28K7
26K8 | 189 | 103 | 9.3 | | 30K9
26K10 | 356 | 210 | 12 | 1 | | | | | | | | | 194 | 97 | 9.7 | | | Joist
Type | Allow
Loads
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | Allow
Loads
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | Allov
Loads
Total | vable
s (PLF)
Uniforn | Joist
Weight
1 (lbs./ft.) | Joist
Type | Allow
Loads
Total | | Joist
Weight
n (lbs./ft.) | |-----|------------------|-------------------------|------------|-------------------------------|------------------|-------------------------|------------|-------------------------------|------------------|-------------------------|-----------------------------|---------------------------------|------------------|-------------------------|------------|---------------------------------| | | 50 ° | LENGT | l (Cor | nt.) | 52 | ' LENGTH | l (Con | t.) | 55 | ' LENGT | H (Co | nt.) | 57 | " LENGTH | l (Cor | nt.) | | ſ | 30K7 | 203 | 119 | 9.4 | 32LH11 | 580 | 343 | 23 | 28K7 | 156 | 77 | 9.3 | 48LH11 | 383 | 316 | 15 | | - | 26K9 | 211 | 105 | 10 | 36LH12 | 660
776 | 441 | 25 | 30K7 | 168 | 89
95 | 9.4 | 36LH9
44LH11 | 418 | 256 | 18 | | - | 28K9
30K9 | 228
245 | 123
141 | 11
11 | 36LH13
36LH14 | 776
855 | 517
568 | 28
31 | 28K8
30K8 | 173
185 | 85
98 | 9.9
10 | 40LH10 | 422
424 | 318
290 | 17
17 | | - 1 | 26K10 | 250 | 124 | 12 | 36LH15 | 902 | 598 | 33 | 28K9 | 188 | 92 | 11 | 36LH10 | 461 | 283 | 21 | | - 1 | 28K10 | 270 | 144 | 12 | 40LH15 | 931 | 690 | 31 | 30K9 | 202 | 106 | 11 | 36LH11 |
503 | 308 | 22 | | -[| 30K11 | 333 | 190 | 14 | 40LH16 | 1026 | 758 | 34 | 28K10 | 223 | 108 | 12 | 36LH12 | 602 | 367 | 25 | | -1 | 30K12 | 350 | 199 | 14 | | | | | 30K10 | 240 | 125 | 12 | 44LH13 | 619 | 465 | 23 | | - | 36LH8 | 372 | 262 | 14 | | 53' LEN | GTH | | 40LH8 | 304 | 216 | 13 | 40LH13 | 664 | 449 | 26 | | - | 32LH8
36LH9 | 411
477 | 255
333 | 16
17 | | | | | 36LH7
30K12 | 307
312 | 197
161 | 13
16 | 36LH13
32LH14 | 708
713 | 430
374 | 30
33 | | - | 36LH10 | 526 | 368 | 18 | 28K6 | 151 | 78 | 8.6 | 44LH9 | 366 | 287 | 15 | 36LH14 | 780 | 472 | 34 | | - | 36LH11 | 574 | 400 | 21 | 28K7
30K7 | 168
181 | 87
100 | 9.2
9.4 | 36LH9 | 434 | 275 | 18 | 36LH15 | 822 | 497 | 36 | | - | 32LH11 | 625 | 385 | 23 | 28K8 | 186 | 95 | 9.9 | 40LH10 | 439 | 312 | 17 | 44LH14 | 829 | 619 | 31 | | - | 36LH12 | 687 | 477 | 23 | 28K9 | 203 | 103 | 11 | 36LH10 | 477 | 304 | 20 | 40LH15 | 849 | 573 | 33 | | - | 36LH13 | 807 | 559 | 28 | 30K9 | 218 | 119 | 11 | 36LH11 | 521 | 330 | 22 | 48LH16 | 905 | 737 | 31 | | - | 36LH14 | 890 | 615 | 30 | 28K10 | 240 | 121 | 12 | 32LH11 | 522 | 292 | 24 | 44LH16 | 956 | 711 | 36 | | ١ | 36LH15
40LH15 | 938
968 | 647
746 | 32
31 | 30K10 | 258 | 140 | 12 | 44LH12
36LH12 | 541
624 | 421
394 | 20
25 | 44LH17 | 1027 | 761 | 38 | | - 1 | 40LH15 | 1067 | 820 | 34 | 40LH8 | 315 | 233 | 12 | 44LH13 | 642 | 499 | 23 | | FOLL EN | OTIL | | | | IOLI III | 1007 | 020 | J ⁴ 1 | 30K12
44LH9 | 330
380 | 177
309 | 16
14 | 36LH13 | 734 | 462 | 29 | | 58' LEN | GIH | | | | | 51' LEN | GTH | | 36LH9 | 450 | 296 | 18 | 44LH14 | 739 | 572 | 26 | 30K7 | 151 | 76 | 9.4 | | - 1 | | JI LEN | ч | | 44LH11 | 454 | 368 | 16 | 36LH14 | 809 | 507 | 32 | 30K8 | 167 | 83 | 10 | | - [| 26K5 | 139 | 69 | 7.9 | 32LH9 | 463 | 270 | 19 | 36LH15 | 852 | 534 | 34 | 30K9 | 181 | 90 | 11 | | - | 26K6 | 151 | 75 | 8.5 | 36LH10 | 496 | 327 | 19 | 44LH15 | 860 | 665 | 31 | 30K10 | 215 | 106 | 12 | | - 1 | 28K6 | 163 | 88 | 8.6 | 36LH11 | 541 | 356 | 21 | 40LH15
44LH16 | 880
991 | 616
765 | 33
34 | 30K11 | 247 | 121 | 14 | | - 1 | 26K7 | 168 | 83 | 9.1 | 44LH12 | 562 | 454 | 19 | 44LH17 | 1065 | 817 | 36 | 40LH8 | 288 | 195 | 13 | | - 1 | 28K7 | 182 | 97 | 9.3 | 36LH12
36LH13 | 647
761 | 424
498 | 25
28 | 4461117 | 1005 | 017 | 30 | 44LH9
48LH11 | 347
376 | 258
305 | 15
15 | | - 1 | 26K8
26K9 | 186
203 | 91
99 | 9.8
10 | 44LH14 | 767 | 616 | 26 | | 56' LEN | ICTH | | 40LH9 | 378 | 254 | 17 | | - 1 | 28K9 | 219 | 115 | 11 | 36LH14 | 839 | 547 | 31 | | JO LLI | id III | | 44LH10 | 383 | 284 | 16 | | - 1 | 30K9 | 235 | 133 | 11 | 36LH15 | 885 | 575 | 34 | 28K6 | 135 | 66 | 8.6 | 32LH9 | 391 | 208 | 19 | | - 1 | 26K10 | 241 | 116 | 12 | 44LH15 | 892 | 716 | 31 | 28K7 | 151 | 73 | 9.2 | 44LH11 | 414 | 307 | 17 | | - 1 | 28K10 | 260 | 136 | 12 | 40LH15 | 913 | 664 | 32 | 30K7 | 162 | 84 | 9.4 | 40LH10 | 416 | 280 | 18 | | - | 30K10 | 279 | 157 | 12 | 44LH16 | 1029 | 824 | 34 | 28K8 | 166 | 80 | 9.9 | 36LH10 | 454 | 273 | 21 | | - | 30K11
30K12 | 320
343 | 179
192 | 14
15 | 44LH17 | 1105 | 880 | 37 | 30K8
28K9 | 179
181 | 92
87 | 10
11 | 36LH11
36LH12 | 495
593 | 297
354 | 22
25 | | - | 28LH7 | 352 | 186 | 16 | | EAL EN | CTIL | | 30K9 | 195 | 100 | 11 | 44LH13 | 609 | 449 | 23 | | ١ | 36LH8 | 365 | 251 | 14 | | 54' LEN | GIH | | 28K10 | 215 | 102 | 12 | 36LH13 | 697 | 415 | 30 | | -1 | 32LH8 | 397 | 242 | 16 | 28K6 | 145 | 74 | 8.7 | 30K10 | 231 | 118 | 12 | 44LH14 | 701 | 514 | 28 | | - | 36LH9 | 468 | 320 | 17 | 28K7 | 162 | 82 | 9.2 | 30K11 | 265 | 135 | 14 | 36LH14 | 768 | 456 | 35 | | - | 36LH10 | 515 | 354 | 19 | 30K7 | 174 | 94 | 9.4 | 40LH8 | 298 | 209 | 13 | 36LH15 | 809 | 480 | 36 | | - | 36LH11 | 563 | 385 | 21 | 28K8 | 179 | 89 | 9.9 | 30K12 | 301 | 153 | 16 | 44LH15 | 815 | 597 | 31 | | - | 32LH11
36LH12 | 602
673 | 363
459 | 23
24 | 28K9 | 195 | 97 | 11 | 44LH9
36LH9 | 359
426 | 277
265 | 15
18 | 48LH16
40LH16 | 890
919 | 712
608 | 31
37 | | - | 36LH13 | 791 | 538 | 28 | 30K9 | 209 | 112 | 11 | 44LH11 | 429 | 329 | 17 | 44LH16 | 940 | 687 | 37 | | - | 32LH13 | 801 | 480 | 30 | 28K10
30K10 | 232
249 | 114 | 12
12 | 40LH10 | 431 | 301 | 17 | 48LH17 | 999 | 796 | 37 | | - | 36LH14 | 872 | 591 | 31 | 30K10 | 285 | 150 | 14 | 36LH10 | 469 | 293 | 21 | 44LH17 | 1009 | 734 | 40 | | | 36LH15 | 920 | 622 | 33 | 40LH8 | 309 | 225 | 13 | 40LH11 | 471 | 326 | 19 | | | | | | - 1 | 40LH15 | 949 | 717 | 31 | 36LH7 | 313 | 204 | 13 | 36LH11 | 512 | 319 | 23 | | 59' LEN | GTH | | | | 40LH16 | 1046 | 788 | 33 | 30K12 | 324 | 170 | 16 | 44LH12
36LH12 | 532 | 406 | 20 | | | | | | ı | | FOLLE | OT:: | | 44LH9 | 373 | 298 | 14 | 36LH12
44LH13 | 613
631 | 380
482 | 25
23 | 30K7 | 146 | 72 | 9.4 | | | | 52' LEN | GIH | | 36LH9
44LH11 | 442
445 | 285
354 | 18
16 | 40LH13 | 675 | 465 | 26 | 30K8
30K9 | 161
175 | 79
86 | 10
11 | | - 1 | 26K5 | 133 | 65 | 7.9 | 32LH9 | 445
447 | 256 | 19 | 36LH13 | 720 | 445 | 30 | 30K9 | 208 | 101 | 12 | | - [| 26K6 | 145 | 71 | 7.9
8.4 | 36LH10 | 486 | 315 | 19 | 44LH14 | 726 | 552 | 27 | 40LH8 | 283 | 188 | 13 | | - | 28K6 | 157 | 83 | 8.6 | 40LH11 | 488 | 350 | 18 | 32LH14 | 738 | 395 | 33 | 48LH10 | 341 | 273 | 14 | | | 26K7 | 162 | 79 | 9.1 | 36LH11 | 531 | 343 | 22 | 36LH14 | 794 | 489 | 34 | 44LH10 | 377 | 274 | 16 | | | 28K7 | 175 | 92 | 9.3 | 44LH12 | 552 | 437 | 19 | 36LH15 | 837 | 515 | 35 | 32LH9 | 379 | 198 | 19 | | | 26K8 | 179 | 86 | 9.7 | 36LH12 | 635 | 409 | 25 | 44LH15
40LH15 | 844
864 | 641
594 | 30
33 | 44LH11 | 407 | 296 | 17 | | ١ | 26K9 | 195 | 93 | 10 | 44LH13
36LH13 | 654 | 518
479 | 23
29 | 44LH16 | 974 | 737 | 35 | 36LH10
36LH11 | 440 | 260 | 20 | | 1 | 28K9
30K9 | 210
226 | 109
126 | 11
11 | 44LH14 | 747
753 | 594 | 29 | 44LH17 | 1046 | 788 | 37 | 36LH12 | 480
575 | 283
338 | 23
25 | | | 26K10 | 231 | 110 | 12 | 36LH14 | 824 | 527 | 32 | | | | | 44LH13 | 598 | 434 | 24 | | - [| 28K10 | 250 | 128 | 12 | 36LH15 | 868 | 554 | 34 | | 57' LEN | IGTH | | 36LH13 | 675 | 395 | 30 | | ١ | 30K10 | 268 | 148 | 12 | 44LH15 | 876 | 690 | 31 | | | | | 44LH14 | 689 | 497 | 28 | | M | 28K12 | 325 | 165 | 15 | 40LH15 | 896 | 639 | 33 | 30K7 | 156 | 80 | 9.4 | 36LH14 | 755 | 434 | 35 | | | 30K12 | 336 | 184 | 15 | 44LH16 | 1010 | 793 | 34 | 30K8 | 173 | 88 | 10 | 36LH15 | 795 | 464 | 36 | | | 28LH7 | 339 | 176 | 16 | 44LH17 | 1084 | 848 | 37 | 30K9 | 188 | 95 | 11 | 44LH15 | 801 | 577
525 | 31 | | | 32LH8
36LH9 | 383
459 | 229
308 | 16
18 | | | OTIL | | 30K10
30K11 | 223
256 | 112
128 | 12
14 | 40LH15
48LH16 | 820
874 | 535
688 | 34
32 | | | 36LH9
36LH10 | 459
505 | 340 | 19 | | 55' LEN | GIH | | 40LH8 | 293 | 201 | 13 | 40LH16 | 903 | 588 | 32
37 | | - | 36LH11 | 552 | 370 | 21 | 28K6 | 140 | 70 | 8.6 | 48LH10 | 353 | 293 | 15 | 44LH16 | 924 | 664 | 37 | | L | | | | | | | | 0.0 | | | | | | | | | | Joist
Type | | owable
ds (PLF)
Unifor | Joist
Weight
m (lbs/ft.) | Joist
Type | | wable
Is (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ds (PLF)
Uniform | Joist
Weight
1 (lbs./ft.) | Joist
Type | | wable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | |--------------------|------------|------------------------------|--------------------------------|-------------------|--------------------------|------------------------------|-------------------------------|-------------------|--------------------|------------------------------|---------------------------------|-------------------|------------|-----------------------------|-------------------------------| | | 9' LENGT | H (Co | nt.) | | LENGTI | H (Con | t.) | | LENGT | TH (Co | nt.) | | ENGTI | H (Cont | t.) | | 48LH17 | | 769 | 37 | 48LH16 | 832 | 623 | 33 | 44LH13 | 543 | 357 | 26 | 48LH14 | 572 | 392 | 28 | | 44LH17 | 7 992 | 710 | 39 | 44LH16 | 879 | 601 | 37 | 40LH13 | 581 | 344 | 28 | 52DLH13 | 587 | 434 | 27 | | | 001151 | | | 52DLH16
48LH17 | 892
934 | 732
696 | 34
37 | 52DLH13
44LH14 | 614
625 | 475
409 | 26
29 | 44LH14
48LH15 | 597
658 | 373
449 | 30
32 | | | 60' LEN | NGIH | | 44LH17 | 944 | 642 | 41 | 52DLH14 | 702 | 531 | 30 | 52DLH14 | 671 | 485 | 31 | | 30K7 | 141 | 69 | 9.4 | 52DLH17 | 1026 | 835 | 40 | 44LH15 | 727 | 475 | 31 | 44LH15 | 695 | 434 | 31 | | 30K8 | 156 | 75 | 10 | | | | | 52DLH15 | 789 | 598 | 33 | 52DLH15 | 754 | 546 | 34 | | 30K9 | 169 | 81 | 11 | | 63' LEN | IGTH | | 52DLH16
44LH17 | 851
900 | 665
584 | 34
43 | 48LH16
52DLH16 | 758
813 | 517
608 | 36
37 | | 30K10 | 201 | 96 | 12 | 401.110 | 005 | 405 | 4.4 | 52DLH17 | 979 | 759 | 40 | 48LH17 | 851 | 578 | 41 | | 30K11
40LH8 | 231
278 | 109
182 | 14
13 | 40LH8
48LH10 | 265
319 | 165
239 | 14
15 | 0252 | 0.0 | | | 44LH17 | 860 | 533 | 45 | | 48LH10 | | 264 | 15 | 40LH9 | 348 | 215 | 18 | | 66' LEN | ICTH | | 52DLH17 | 935 | 694 | 42 | | 44LH10 | | 265 | 16 | 44LH10 | 353 | 240 | 17 | | OO LLI | 10111 | | | \ | | | | 44LH11 | | 287 | 17 | 44LH11 | 381 | 260 | 18 | 40LH8 | 254 | 150 | 15 | 6 | 9' LEN | IGTH | | | 36LH10
40LH11 | | 248
283 | 20
19 | 40LH10
36LH10 | 383
389 | 237
215 | 19
21 | 48LH10 | 305 | 216 | 16 | 40LH8 | 234 | 132 | 15 | | 36LH11 | | 269 | 23 | 40LH11 | 418 | 257 | 21 | 44LH10
44LH11 | 337
364 | 219
237 | 17 | 44LH9 | 291 | 182 | 17 | | 36LH12 | | 322 | 25 | 36LH11 | 425 | 234 | 23 | 40LH10 | 367 | 216 | 20 | 40LH9 | 306 | 173 | 18 | | 44LH13 | | 419 | 25 | 44LH12 | 472 | 321 | 22 | 40LH11 | 399 | 234 | 22 | 44LH10 | 322 | 200 | 18 | | 36LH13 | | 376
480 | 30
28 | 40LH12
44LH13 | 509
560 | 313
380 | 25
25 | 48LH12 | 417 | 295 | 20 | 40LH10
44LH11 | 338
348 | 190
216 | 20
20 | | 36LH14 | | 412
 34 | 44LH13
40LH13 | 600 | 367 | 25
28 | 44LH12
40LH12 | 451 | 292 | 23
25 | 56DLH11 | 409 | 342 | 21 | | 48LH15 | | 577 | 28 | 52DLH13 | 634 | 506 | 26 | 52DLH12 | 48 6
498 | 285
380 | 25 | 44LH12 | 431 | 267 | 23 | | 36LH15 | | 448 | 36 | 44LH14 | 645 | 435 | 29 | 44LH13 | 535 | 346 | 26 | 40LH12 | 447 | 251 | 25 | | 44LH15 | | 558
665 | 31 | 52DLH14 | 724
750 | 565
506 | 29 | 52DLH13 | 605 | 461 | 26 | 48LH13 | 478 | 323 | 24 | | 48LH16 | | 665
642 | 32
36 | 44LH15
52DLH15 | 750
814 | 506
637 | 31
32 | 44LH14 | 615 | 396 | 31 | 44LH13
52DLH13 | 511
578 | 317
421 | 29
27 | | 48LH17 | | 744 | 37 | 48LH16 | 819 | 603 | 33 | 52DLH14
44LH15 | 691
716 | 515
461 | 30 | 44LH14 | 588 | 363 | 31 | | 44LH17 | | 686 | 39 | 44LH16 | 865 | 582 | 37 | 40LH15 | 734 | 427 | 36 | 48LH15 | 648 | 436 | 32 | | | | | | 52DLH16 | 878 | 708 | 35 | 52DLH15 | 777 | 580 | 34 | 52DLH14 | 661 | 471 | 31 | | | 61' LEN | IGTH | | 48LH17
44LH17 | 919
929 | 674
622 | 38
40 | 48LH16 | 781 | 549 | 35 | 44LH15
56DLH15 | 684
735 | 421
568 | 31
32 | | 40LH8 | 274 | 176 | 13 | 52DLH17 | 1010 | 809 | 40 | 52DLH16 | 838
886 | 645
566 | 37
43 | 52DLH15 | 743 | 530 | 34 | | 48LH10 | | 176
256 | 15 | | | | | 44LH17
52DLH17 | 964 | 736 | 43 | 48LH16 | 747 | 502 | 36 | | 44LH10 | | 257 | 16 | | 64' LEN | IGTH | | OLDLINI | 001 | ,00 | 10 | 52DLH16 | 801 | 590 | 38 | | 44LH11 | 394 | 277 | 17 | | | | | | 67' LEN | IGTH | | 48LH17
44LH17 | 839
848 | 562
518 | 41
45 | | 40LH10 | | 253 | 18 | 40LH8 | 261 | 160 | 15 | | | | | 52DLH17 | 922 | 674 | 45 | | 36LH10
40LH11 | | 236
274 | 21
21 | 48LH10
40LH9 | 31 <mark>4</mark>
342 | 232
209 | 15
18 | 40LH8 | 247 | 144 | 15 | OLDLIII | OLL | 07 1 | | | 36LH11 | | 257 | 23 | 44LH10 | 347 | 233 | 17 | 44LH9
40LH9 | 300
323 | 193
188 | 16
18 | 7 | 0' LEN | IGTH | | | 44LH12 | | 342 | 21 | 44LH11 | 375 | 252 | 18 | 44LH10 | 332 | 212 | 18 | | | | | | 40LH12 | | 334 | 25 | 40LH10 | 377 | 230 | 19 | 44LH11 | 359 | 230 | 18 | 40LH8 | 228 | 127 | 15 | | 44LH13
40LH13 | | 405
391 | 25
28 | 36LH10
40LH11 | 378
412 | 206
249 | 21
21 | 56DLH11 | 422 | 363 | 20 | 40LH9
44LH10 | 298
317 | 166
195 | 18
18 | | 48LH14 | | 487 | 26 | 48LH12 | 430 | 314 | 19 | 44LH12
36LH12 | 444
450 | 283
232 | 23
25 | 40LH10 | 329 | 183 | 20 | | 44LH14 | | 464 | 28 | 44LH12 | 465 | 311 | 22 | 40LH12 | 472 | 273 | 25 | 44LH11 | 343 | 210 | 20 | | 48LH15 | | 558 | 29 | 36LH12 | 493 | 267 | 25 | 52DLH12 | 491 | 369 | 23 | 36LH11 | 348 | 173 | 23 | | 44LH15 | | 540
500 | 31 | 44LH13 | 551
501 | 368 | 25 | 44LH13 | 527 | 336 | 26 | 40LH11
56DLH11 | 358 | 198 | 22 | | 40LH15
48LH16 | | 500
643 | 36
33 | 40LH13
52DLH13 | 591
625 | 355
490 | 28
26 | 48LH14 | 581
506 | 404 | 27 | 44LH12 | 403
425 | 332
259 | 21
24 | | 44LH16 | | 621 | 37 | 44LH14 | 635 | 422 | 29 | 52DLH13
44LH14 | 596
606 | 447
385 | 27
30 | 40LH12 | 435 | 241 | 25 | | 48LH17 | 949 | 719 | 37 | 52DLH14 | 713 | 547 | 29 | 40LH14 | 638 | 367 | 34 | 52DLH12 | 469 | 338 | 24 | | 44LH17 | 959 | 664 | 39 | 44LH15 | 738 | 490 | 31 | 48LH15 | 668 | 462 | 31 | 48LH13 | 471 | 313 | 24 | | | | | | 52DLH15
48LH16 | 801
806 | 617
584 | 32
34 | 52DLH14 | 681 | 499 | 31 | 44LH13
48LH14 | 504
556 | 307
370 | 27
29 | | | 62' LE | NGTH | | 52DLH16 | 864 | 686 | 35 | 44LH15
40LH15 | 705
712 | 447
408 | 31
36 | 52DLH13 | 570 | 409 | 29 | | 40LH8 | 000 | 170 | 14 | 48LH17 | 905 | 653 | 39 | 52DLH15 | 712
765 | 563 | 36 | 44LH14 | 580 | 352 | 31 | | 40LH8
48LH10 | | 170
247 | 14
15 | 44LH17 | 914 | 602 | 43 | 48LH16 | 770 | 533 | 35 | 48LH15 | 639 | 423 | 32 | | 44LH10 | | 248 | 17 | 52DLH17 | 994 | 783 | 40 | 52DLH16 | 825 | 626 | 37 | 52DLH14
44LH15 | 652
675 | 457
409 | 31
31 | | 44LH11 | | 268 | 18 | | 65' L EN | ICTU | | 48LH17 | 864 | 596
549 | 40 | 52DLH15 | 732 | 515 | 34 | | 40LH10 | | 245 | 19 | | 65' LEN | шп | | 44LH17
52DLH17 | 873
950 | 549
715 | 44
40 | 48LH16 | 736 | 488 | 36 | | 36LH10
40LH11 | | 225
265 | 21
21 | 40LH8 | 257 | 155 | 15 | | | | | 52DLH16 | 789 | 573 | 37 | | 36LH11 | | 246 | 23 | 48LH10 | 309 | 225 | 15 | | 68' LEN | IGTH | | 48LH17 | 827 | 546
503 | 41
45 | | 44LH12 | 2 480 | 3 31 | 21 | 44LH10 | 342 | 226 | 17 | | | | | 44LH17
56DLH17 | 835
901 | 503
700 | 45
40 | | 40LH12 | | 323 | 25 | 44LH11
40LH10 | 370
371 | 244
223 | 18
19 | 40LH8 | 241 | 138 | 15 | 52DLH17 | 909 | 654 | 44 | | 44LH13 | | 392 | 25 | 40LH10
40LH11 | 405 | 223
241 | 21 | 44LH9 | 296 | 187 | 17 | | | | | | 40LH13 | | 379
472 | 29
26 | 48LH12 | 424 | 305 | 20 | 40LH9
44LH10 | 315
327 | 180
206 | 18
18 | 7 | 1' LEN | IGTH | | | 44LH14 | | 450 | 29 | 44LH12 | 458 | 301 | 23 | 56DLH11 | 415 | 352 | 20 | | | | | | 52DLH | 14 736 | 584 | 29 | 36LH12 | 478 | 255 | 25 | 44LH12 | 437 | 275 | 23 | 40LH8 | 222 | 122 | 15 | | 44LH15 | | 522 | 31 | 40LH12
52DLH12 | 493
506 | 294
392 | 25
22 | 40LH12 | 459 | 261 | 25 | 44LH9
40LH9 | 283
291 | 172
160 | 17
18 | | 52DLH ⁻ | 15 827 | 658 | 32 | OLDLITIZ | 500 | COL | LL | 44LH13 | 519 | 326 | 26 | 102110 | 201 | 100 | 10 | | | | | | | | | | | | | | | | | | | Joist
Type | Allowa
Loads
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ds (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Uniforn | Joist
Weight
n (lbs./ft.) | Joist
Type | | wable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | |--------------------|--------------------------|------------|-------------------------------|--------------------|--|------------------------------|-------------------------------|---------------------------------|------------|------------------------------|---------------------------------|--------------------|------------|-----------------------------|-------------------------------| | 71' L | .ENGTH | (Con | ıt.) | 7 | 4' LEN | IGTH | | 76' L | .ENGTI | H (Cor | nt.) | 79' L | .ENGTI | H (Con | t.) | | 44LH10
40LH10 | 313
321 | 189
176 | 18
20 | 40LH8
40LH9 | 206
269 | 108
141 | 15
18 | 44LH17
60DLH17 | 769
823 | 428
632 | 47
41 | 48LH16
60DLH16 | 652
689 | 383
514 | 40
38 | | 44LH11 | 338 | 204 | 20 | 44LH9 | 272 | 158 | 18 | 52DLH17 | 837 | 555 | 45 | 56DLH16 | 693 | 482 | 38 | | 40LH11 | 349 | 190 | 22 | 40LH10 | 297 | 156 | 20 | 60DLH18 | 950 | 714 | 47 | 52DLH16 | 699 | 450 | 41 | | 56DLH11
44LH12 | 398
419 | 323
252 | 21
24 | 44LH10
56DLH11 | 300
381 | 174
297 | 19
21 | - | 7' LEN | ICTU | | 48LH17
64DLH17 | 732
788 | 428
622 | 45
41 | | 40LH12 | 424 | 231 | 25 | 44LH12 | 402 | 232 | 25 | • | / LLIN | dill | | 60DLH17 | 792 | 5 85 | 44 | | 52DLH12
48LH13 | 463
464 | 328
305 | 24
26 | 52DLH12
48LH13 | 444
445 | 302
280 | 24
25 | 40LH8 | 192 | 97 | 16 | 52DLH17
60DLH18 | 805
914 | 513
660 | 48
47 | | 44LH13 | 497 | 299 | 28 | 44LH13 | 477 | 275 | 29 | 44LH9
44LH10 | 253
279 | 141
155 | 18
19 | OODLITTO | 914 | 000 | 47 | | 40LH13 | 500 | 271 | 30 | 48LH14 | 525 | 331 | 29 | 48LH11 | 283 | 172 | 18 | 8 | 0' LEN | IGTH | | | 52DLH13
44LH14 | 562
572 | 398
342 | 28
31 | 52DLH13
44LH14 | 539
549 | 366
315 | 29
31 | 44LH11
44LH12 | 302 | 168
207 | 21 | 40LH8 | 170 | 0.0 | 15 | | 52DLH14 | 642 | 444 | 31 | 52DLH14 | 616 | 409 | 32 | 52DLH11 | 374
382 | 256 | 25
24 | 40LH8
40LH9 | 178
233 | 86
113 | 18 | | 44LH15
52DLH15 | 665
722 | 398
501 | 31
35 | 44LH15
60DLH15 | 639
669 | 366
525 | 31
32 | 52DLH12 | 427 | 279 | 26 | 44LH9 | 236 | 127 | 18 | | 52DLH15
52DLH16 | 778 | 557 | 37 | 52DLH15 | 692 | 461 | 37 | 48LH13
44LH13 | 428
444 | 259
246 | 27
28 | 40LH10
44LH10 | 255
260 | 124
139 | 20
19 | | 48LH17 | 815 | 530 | 41 | 52DLH16 | 747 | 513 | 38 | 52DLH13 | 518 | 338 | 30 | 48LH11 | 272 | 160 | 18 | | 44LH17
56DLH17 | 824
889 | 489
680 | 45
40 | 48LH17
44LH17 | 782
790 | 488
450 | 45
47 | 40LH15 | 538 | 268 | 36 | 44LH11 | 282 | 151 | 21 | | 52DLH17 | 896 | 636 | 44 | 60DLH17 | 846 | 667 | 40 | 56DLH14
52DLH14 | 577
592 | 404
378 | 32
34 | 52DLH10
44LH12 | 335
347 | 21 7
185 | 22
25 | | 60DLH18 | 1017 | 818 | 46 | 52DLH17 | 859 | 585 | 45 | 44LH15 | 593 | 326 | 31 | 52DLH11 | 368 | 237 | 24 | | 7 | '2' LENC | 2TL | | 60DLH18 | 976 | 753 | 46 | 60DLH15 | 643 | 484 | 34 | 52DLH12 | 410 | 258 | 26 | | / | Z LENC | атп | | 7 | 5' LEN | IGTH | | 52DLH15
60DLH16 | 665
707 | 425
541 | 38
36 | 48LH13
44LH13 | 412
413 | 240
220 | 26
29 | | 36LH7 | 196 | 95 | 15 | | | | | 56DLH16 | 711 | 508 | 37 | 48LH14 | 486 | 283 | 32 | | 36LH8
40LH8 | 215
217 | 104
117 | 16
16 | 40LH8
44LH9 | 201
265 | 104
152 | 15
18 | 52DLH16
48LH17 | 717
751 | 473
450 | 40
45 | 52DLH13
60DLH14 | 498
527 | 313
380 | 31
30 | | 44LH9 | 279 | 167 | 17 | 40LH10 | 290 | 150 | 20 | 52DLH17 | 826 | 540 | 46 | 56DLH14 | 555 | 374 | 32 | | 40LH9 | 283 | 153 | 18 | 44LH10 | 293 | 168 | 19 | 60DLH18 | 938 | 695 | 47 | 52DLH14 | 570 | 350 | 35 | | 44LH10
40LH10 | 308
313 | 184
169 | 18
20 | 56DLH11
44LH12 | 376
393 | 289
224 | 21
25 | - | '8' LEN | ICTU | | 52DLH15
64DLH16 | 640
675 | 394
533 | 38
35 | | 44LH11 | 333 | 199 | 19 | 48LH13 | 439 | 273 | 25 | | 6 LEIV | шп | | 60DLH16 | 680 | 501 | 38 | | 56DLH11 | 392 | 314 | 20 | 44LH13 | 466 | 265
322 | 28 | 40LH8 | 187 | 93 | 16 | 56DLH16 | 684 | 470 | 38 | | 44LH12
52DLH12 | 413
456 | 245
319 | 25
24 | 48LH14
56DLH13 | 518
532 |
356 | 29
29 | 44LH9
44LH10 | 247
272 | 136
150 | 18
19 | 52DLH16
48LH17 | 690
723 | 438
417 | 41
47 | | 48LH13 | 458 | 296 | 26 | 44LH14 | 534 | 302 | 31 | 48LH11 | 279 | 168 | 18 | 60DLH17 | 782 | 570 | 44 | | 44LH13
52DLH13 | 490
554 | 291
387 | 29
28 | 52DLH14
44LH15 | 60 <mark>8</mark>
62 <mark>3</mark> | 398
352 | 33
31 | 44LH11 | 295 | 162 | 21 | 52DLH17
60DLH18 | 795
903 | 500
644 | 48
48 | | 44LH14 | 564 | 333 | 31 | 60DLH15 | 660 | 511 | 32 | 44LH1 <mark>2</mark>
52DLH11 | 365
377 | 200
249 | 25
24 | OODLITTO | 903 | 044 | 40 | | 52DLH14 | 633 | 432 | 31 | 52DLH15 | 683 | 449 | 37 | 52DLH12 | 421 | 272 | 26 | 8 | 1' LEN | IGTH | | | 44LH15
52DLH15 | 656
712 | 387
487 | 31
35 | 48LH16
60DLH16 | 687
726 | 425
571 | 39
35 | 48LH13 | 422 | 252 | 26 | 441.110 | 004 | 100 | 10 | | 48LH16 | 716 | 461 | 38 | 52DLH16 | 737 | 499 | 40 | 44LH13
52DLH13 | 433
511 | 236
329 | 28
30 | 44LH9
44LH10 | 231
254 | 122
134 | 18
19 | | 52DLH16 | 767
812 | 542
475 | 38
45 | 48LH17 | 771
780 | 475 | 45 | 40LH15 | 524 | 258 | 36 | 48LH11 | 269 | 156 | 18 | | 44LH17
52DLH17 | 883 | 618 | 45 | 44LH17
60DLH17 | 834 | 438
649 | 47
40 | 56DLH14
52DLH14 | 569
585 | 394
368 | 32
34 | 44LH11
52DLH10 | 276
331 | 146
211 | 21
22 | | 60DLH18 | | 796 | 46 | 52DLH17 | 848 | 570 | 45 | 52DLH14
52DLH15 | 657 | 415 | 38 | 44LH12 | 339 | 179 | 25 | | - | 2' I ENG | 2TU | | 60DLH18 | 963 | 733 | 47 | 48LH16 | 661 | 393 | 40 | 48LH12 | 340 | 196 | 23 | | / | 3' LENC | атп | | . 7 | 6' LEN | IGTH | | 60DLH16
56DLH16 | 698
702 | 528
495 | 38
38 | 52DLH11
52DLH12 | 363
405 | 231
252 | 23
26 | | 40LH8 | 211 | 112 | 15 | | | | | 52DLH16 | 708 | 461 | 41 | 48LH13 | 407 | 234 | 27 | | 44LH9
40LH9 | 275
276 | 162
147 | 17
18 | 40LH8
44LH9 | 196
259 | 100
146 | 15
17 | 48LH17
52DLH17 | 742
815 | 439
526 | 45
45 | 48LH14
52DLH13 | 480
492 | 276
305 | 32
31 | | 44LH10 | 304 | 179 | 18 | 40LH10 | 283 | 144 | 20 | 60DLH18 | 926 | 677 | 46 | 56DLH14 | 548 | 365 | 32 | | 40LH10 | 305 | 162 | 20 | 44LH10 | 286 | 162 | 19 | | | | | 52DLH14 | 563 | 341 | 35 | | 44LH11
56DLH11 | 329
387 | 193
305 | 19
20 | 48LH11
44LH11 | 287
310 | 177
175 | 18
21 | 7 | '9' LEN | GTH | | 52DLH15
64DLH16 | 632
667 | 384
520 | 38
36 | | 44LH12 | 407 | 238 | 25 | 52DLH10 | 353 | 240 | 21 | 40LH8 | 183 | 90 | 15 | 60DLH16 | 672 | 489 | 38 | | 52DLH12 | 450 | 311 | 24 | 44LH12 | 383 | 215 | 25 | 44LH9 | 242 | 131 | 18 | 52DLH16 | 682 | 428 | 42
47 | | 48LH13
44LH13 | 451
483 | 288
283 | 26
29 | 52DLH11
52DLH12 | 387
432 | 263
286 | 23
26 | 44LH10
48LH11 | 266
276 | 144
164 | 19
18 | 48LH17
64DLH17 | 714
769 | 407
592 | 47
41 | | 52DLH13 | 546 | 376 | 28 | 48LH13 | 433 | 266 | 26 | 48LH11
44LH11 | 276
289 | 164
157 | 18
21 | 52DLH17 | 785 | 488 | 48 | | 44LH14
52DLH14 | 556
625 | 324
420 | 31
32 | 44LH13
48LH14 | 454
511 | 254
313 | 28
30 | 52DLH10 | 339 | 222 | 22 | 64DLH18
60DLH18 | 888
891 | 669
628 | 47
53 | | 52DLH14
44LH15 | 647 | 376 | 32 | 52DLH13 | 511
525 | 347 | 30 | 44LH12
52DLH11 | 356
372 | 192
243 | 25
24 | 60DLH18
68DLH19 | 998 | 803 | 53
52 | | 52DLH15 | 702 | 474 | 37 | 52DLH14 | 600 | 388 | 34 | 52DLH11 | 372
416 | 243
265 | 26 | | | | | | 48LH16
52DLH16 | 706
757 | 448
527 | 37
38 | 44LH15
60DLH15 | 608
652 | 339
497 | 31
32 | 48LH13 | 417 | 246 | 26 | 8 | 2' LEN | GIH | | | 44LH17 | 801 | 462 | 47 | 52DLH15 | 674 | 437 | 37 | 44LH13
52DLH13 | 423
505 | 228
321 | 29
30 | 44LH9 | 226 | 118 | 18 | | 52DLH17 | 871 | 601 | 44 | 60DLH16 | 716 | 556 | 36 | 56DLH14 | 562 | 384 | 31 | 44LH10 | 249 | 130 | 19 | | 60DLH18 | 989 | 774 | 46 | 52DLH16
48LH17 | 727
761 | 486
462 | 40
45 | 52DLH14 | 577
648 | 359
404 | 34
38 | 44LH11 | 269 | 140 | 21
25 | | | | | | | | | | 52DLH15 | 648 | 404 | 36 | 44LH12 | 331 | 172 | 25 | | Joist
Type | Allowa
Loads (
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | | vable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Uniform | Joist
Weight | Joist
Type | | vable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | |--------------------|----------------------------|--------------------|-------------------------------|--------------------|------------|-----------------------------|-------------------------------|--------------------|------------|------------------------------|-----------------|--------------------|------------|-----------------------------|-------------------------------| | | LENGTH | | | | LENGT | | | | LENGT | | | | LENGT | | | | 52DLH11
52DLH12 | 359
400 | 225
246 | 24
27 | 68DLH19 | 962 | 746 | 54 | 44LH14
48LH14 | 396
425 | 193
227 | 31
32 | 52DLH17
72DLH18 | 714
771 | 404
581 | 52
47 | | 48LH13
44LH14 | 402
446 | 228
231 | 28
31 | | 85' LEN | IGTH | | 56DLH13
52DLH13 | 451
458 | 283
264 | 31
33 | 68DLH18
60DLH18 | 788
811 | 586
520 | 48
53 | | 52DLH13
60DLH14 | 486
514 | 298
362 | 31
31 | 44LH9 | 211 | 108 | 18 | 44LH15
60DLH14 | 466
485 | 227
321 | 31
32 | 72DLH19
68DLH19 | 905
908 | 659
665 | 54
55 | | 44LH15
52DLH14 | 524
556 | 271
333 | 31
35 | 44LH10
44LH11 | 233
252 | 117
127 | 19
21 | 48LH15
52DLH14 | 488
524 | 260
295 | 36
37 | | 001 51 | IOTIL | | | 60DLH15
52DLH15 | 604
624 | 427
375 | 34
39 | 44LH12
52DLH10 | 308
315 | 155
192 | 25
24 | 64DLH15
56DLH15 | 552
583 | 403
357 | 35
38 | | 90' LEN | GTH | | | 64DLH16
60DLH16 | 659
664 | 508
477 | 36
38 | 52DLH11
52DLH12 | 346
386 | 210
229 | 25
27 | 52DLH15
64DLH16 | 588
621 | 333
451 | 41
38 | 48LH10
48LH11 | 208
225 | 108
117 | 18
20 | | 52DLH16
48LH17 | 673
706 | 417
397 | 44
47 | 44LH14
56DLH13 | 415
462 | 207
297 | 31
30 | 56DLH16
52DLH16 | 629
635 | 397
370 | 41
45 | 52DLH10
52DLH11 | 298
327 | 171
187 | 24
26 | | 52DLH17
64DLH18 | 775
877 | 476
653 | 48
46 | 52DLH13
44LH15 | 469
488 | 277
243 | 32
31 | 72DLH17
60DLH17 | 674
719 | 538
482 | 39
46 | 48LH13
52DLH12 | 338
365 | 175
204 | 29
29 | | 60DLH18
68DLH19 | 880
986 | 613
783 | 53
52 | 60DLH14
48LH15 | 496
510 | 336
278 | 31
36 | 56DLH17
52DLH17 | 725
730 | 452
423 | 48
52 | 48LH14
60DLH13 | 399
422 | 206
282 | 32
30 | | OODLITIS | | | J2 | 52DLH14
60DLH15 | 536
582 | 310
397 | 37
34 | 68DLH18 | 807 | 613 | 46 | 56DLH13
52DLH13 | 436
443 | 265
247 | 31
34 | | | 83' LENC | GTH | | 56DLH15
60DLH16 | 596
640 | 374
444 | 38
39 | 60DLH18
68DLH19 | 830
929 | 696 | 53
54 | 60DLH14
52DLH14 | 468
507 | 300
276 | 32
38 | | 44LH9
44LH10 | 221
243 | 114
125 | 18
19 | 56DLH16
52DLH16 | 644
650 | 416
388 | 41
45 | | 88' LEN | IGTH | | 64DLH15
60DLH15 | 533
550 | 376
354 | 34
37 | | 44LH11
44LH12 | 264
323 | 136
166 | 21
25 | 48LH17
72DLH17 | 660
690 | 358
564 | 47
38 | 441.110 | | | 40 | 64DLH16 | 600 | 421 | 39 | | 48LH12
52DLH11 | 329
354 | 185
220 | 24
25 | 60DLH17
56DLH17 | 736
742 | 505
474 | 45
46 | 44LH9
44LH10 | 198
218 | 96
106 | 18 | 60DLH16
52DLH16 | 604
614 | 396
346 | 40
45 | | 52DLH12
44LH14 | 396
436 | 240
223 | 27
31 | 52DLH17
64DLH18 | 748
846 | 443
607 | 52
47 | 44LH11
44LH12 | 236
287 | 115
139 | 21
25 | 72DLH17
60DLH17 | 651
695 | 503
450 | 40
46 | | 60DLH13
56DLH13 | 457
473 | 332
311 | 28
30 | 60DLH18
68DLH19 | 849
951 | 570
729 | 53
54 | 52DLH10
52DLH11 | 305
334 | 179
196 | 23
26 | 72DLH18
68DLH18 | 763
780 | 568
573 | 46
48 | | 52DLH13 | 480 | 291 | 32 | 00DLH19 | 951 | 129 | 54 | 52DLH12
44LH14 | 373
387 | 213
187 | 27
31 | 60DLH18
72DLH19 | 802
894 | 508
644 | 53
54 | | 60DLH14
44LH15 | 508
512 | 353
261 | 30
31 | | 86' LEN | IGTH | | 48LH14
56DLH13 | 416
446 | 220
277 | 32
31 | 68DLH19 | 898 | 650 | 55 | | 52DLH14
60DLH15 | 549
596 | 325
417 | 35
34 | 44LH9
44LH10 | 207
228 | 103
113 | 18
19 | 52DLH13
44LH15 | 453
455 | 258
219 | 33
31 | | 91' LEN | IGTH | | | 56DLH15
60DLH16 | 611
656 | 392
466 | 37
38 | 44LH11
44LH12 | 247
300 | 123 | 21
25 | 60DLH14
52DLH14 | 479
518 | 314
289 | 32
37 | 48LH10 | 204 | 105 | 18 | | 52DLH16
48LH17 | 665
690 | 407
383 | 44
47 | 52DLH10 | 312 | 149
187 | 24 | 64DLH15
60DLH15 | 545
562 | 393
370 | 35
37 | 48LH11
52DLH10 | 220
291 | 113
165 | 20
24 | | 60DLH17
52DLH17 | 754
766 | 529
465 | 45
48 | 52DLH11
52DLH12 | 342
382 | 205 | 26
27 | 56DLH15
64DLH16 | 582
614 | 325
440 | 41
38 | 52DLH11
48LH13 | 320
332 | 181
170 | 26
29 | | 64DLH18
60DLH18 | 866
870 | 637
598 | 48
53 | 44LH14
56DLH13 | 406
456 | 200 | 31
30 | 52DLH16
72DLH17 | 627
666 | 362
526 | 45
41 | 52DLH12
48LH14 | 357
390 | 197
199 | 29
32 | | 68DLH19 | 974 | 765 | 54 | 52DLH13
60DLH14 | 463
490 | 271
3 29 | 33
32 | 60DLH17
56DLH17 | 711
716 | 471
442 | 46
48 | 60DLH13
52DLH13 | 417
433 | 276
239 | 30
33 | | | 84' LENC | `T⊔ | | 48LH15
52DLH14 | 499
530 | 269
302 | 36
37 | 52DLH17
72DLH18 | 722
780 | 413
594 | 52
47 | 48LH15
64DLH14
 448
460 | 228
313 | 36
32 | | 44LH9 | 216 | 110 | 18 | 60DLH15
56DLH15 | 575
589 | 388
365 | 36
38 | 68DLH18
60DLH18 | 797
820 | 599
532 | 48
53 | 60DLH14
52DLH14 | 463
497 | 293
266 | 34
38 | | 44LH10
44LH11 | 238
258 | 121
131 | 19
21 | 52DLH15
68DLH16 | 595
626 | 341
488 | 41
37 | 72DLH19
68DLH19 | 915
918 | 674
680 | 54
56 | 64DLH15
60DLH15 | 527
544 | 368
346 | 35
37 | | 44LH12
52DLH10 | | 160
196 | 25
23 | 64DLH16
60DLH16 | 628
633 | 461
434 | 38
40 | OODLITTO | | | 30 | 64DLH16
60DLH16 | 593
598 | 412
387 | 39
42 | | 48LH12 | 322 | 179 | 24 | 56DLH16
52DLH16 | 636
642 | 407
379 | 41
45 | | 89' LEN | NGTH | | 52DLH16
60DLH17 | 601
687 | 335
440 | 45
46 | | 52DLH11
52DLH12 | 391 | 215
234 | 25
27 | 48LH17
72DLH17 | 646
682 | 346
551 | 47
38 | 48LH10
48LH11 | 212
229 | 112
120 | 18
20 | 72DLH18
67DLH18 | 754
771 | 555
560 | 46
48 | | 44LH14
56DLH13 | 425
467 | 215
304 | 31
30 | 60DLH17
56DLH17 | 727
733 | 493
463 | 45
48 | 52DLH10
52DLH11 | 301
330 | 175
191 | 23
26 | 60DLH18
72DLH19 | 793
885 | 497
630 | 53
54 | | 52DLH13
44LH15 | 475
500 | 284
252 | 32 | 52DLH17
68DLH18 | 739
816 | 433
627 | 52
46 | 52DLH12 | 369 | 209 | 28 | 68DLH19 | 888 | 636 | 55 | | 60DLH14
48LH15 | 502
521 | 345
287 | 31
36 | 60DLH18
68DLH19 | 839
940 | 557
712 | 53
54 | 48LH14
52DLH13 | 407
448 | 212
253 | 32
33 | | 92' LEN | IGTH | | | 52DLH14
60DLH15 | 543
589 | 317
407 | 37
34 | 0056113 | J-10 | 712 | J4 | 60DLH14
52DLH14 | 474
512 | 307
282 | 32
38 | 48LH10 | 200 | 102 | 18 | | 56DLH15
60DLH16 | | 3 83
455 | 38
39 | | 87' LEN | IGTH | | 64DLH15 | 539
556 | 385
362 | 34
37 | 48LH11
52DLH10 | 216
285 | 110
159 | 20
24 | | 52DLH16
48LH17 | 657
675 | 397
371 | 44
47 | 44LH9
44LH10 | 202
223 | 99
110 | 18
19 | 52DLH15
64DLH16 | 575
607 | 318
431 | 41
38 | 52DLH11
48LH13 | 313
325 | 174
164 | 26
29 | | 60DLH17
56DLH17 | 745
751 | 517
485 | 45
46 | 44LH11
44LH12 | 242
293 | 119
144 | 21
25 | 60DLH16
52DLH16 | 611
620 | 405
354 | 40
45 | 52DLH12
56DLH12 | 349
352 | 191
209 | 29
27 | | 52DLH17
64DLH18 | 757
856 | 454
622 | 52
48 | 52DLH10
52DLH11 | 308
338 | 183
200 | 24
26 | 72DLH17
60DLH17 | 659
703 | 514
460 | 41
46 | 48LH14
60DLH13 | 383
412 | 193
270 | 32
30 | | 60DLH18 | 859 | 584 | 53 | 52DLH12 | 377 | 218 | 27 | 56DLH17 | 708 | 432 | 49 | 52DLH13 | 424 | 231 | 33 | | Joist
Type | | wable
s (PLF)
Uniforn | Joist
Weight | Joist
Type | | wable
ls (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | owable
ds (PLF)
Uniforr | Joist
Weight
n (lbs/ft.) | Joist
Type | | vable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | |--------------------|------------|-----------------------------|-----------------|--------------------|------------|------------------------------|-------------------------------|--------------------|--------------------|-------------------------------|--------------------------------|--------------------|------------|-----------------------------|-------------------------------| | | LENGT | H (Co | nt.) | | 95' LEN | NGTH | | | LENGT | Н (Со | nt.) | | LENGT | H (Co | nt.) | | 56DLH13 | 427 | 253 | 32 | 48LH10 | 188 | 93 | 18 | 64DLH15 | 494 | 324 | 37 | 52DLH13 | 358 | 180 | 33 | | 48LH15 | 439 | 221 | 36 | 48LH11 | 204 | 100 | 20 | 60DLH15 | 510
527 | 305 | 40 | 60DLH13 | 379 | 228 | 32 | | 60DLH14
52DLH14 | 458
486 | 287
258 | 34
38 | 52DLH10
52DLH11 | 267
293 | 145
158 | 23
26 | 72DLH16
64DLH16 | 537
557 | 380
362 | 38
42 | 56DLH13
52DLH14 | 386
413 | 209 | 33
37 | | 64DLH15 | 521 | 360 | 35 | 52DLH12 | 327 | 173 | 29 | 60DLH16 | 561 | 341 | 44 | 60DLH14 | 421 | 243 | 35 | | 60DLH15 | 538 | 339 | 38 | 56DLH12 | 341 | 196 | 27 | 72DLH17 | 604 | 433 | 42 | 56DLH14 | 435 | 2 34 | 38 | | 52DLH15 | 545 | 291 | 42 | 48LH14 | 360 | 176 | 32 | 64DLH17 | 641 | 412 | 46 | 64DLH15 | 480 | 304 | 37 | | 56DLH15
60DLH16 | 551
591 | 319
379 | 41
42 | 52DLH13
60DLH13 | 397
399 | 209
253 | 33
31 | 56DLH17
72DLH18 | 650
708 | 363
488 | 51
48 | 60DLH15
72DLH16 | 495
521 | 287
358 | 41
39 | | 56DLH16 | 595 | 355 | 45 | 48LH15 | 413 | 201 | 36 | 64DLH18 | 741 | 466 | 53 | 60DLH16 | 544 | 320 | 45 | | 60DLH17 | 680 | 431 | 46 | 60DLH14 | 444 | 269 | 34 | 60DLH18 | 744 | 437 | 59 | 72DLH17 | 586 | 407 | 44 | | 72DLH18 | 746 | 543 | 46 | 52DLH14 | 457 | 234 | 37 | 72DLH19 | 830 | 554 | 55 | 64DLH17 | 622 | 388 | 49 | | 68DLH18
60DLH18 | 763
784 | 548
486 | 48
53 | 56DLH14
68DLH15 | 467
477 | 265
340 | 37
34 | 68DLH19 | 833 | 559 | 60 | 72DLH18
64DLH18 | 686 | 459
438 | 48 | | 68DLH19 | 878 | 622 | 55
55 | 60DLH15 | 521 | 318 | 38 | | 002 L EN | UCTLL | | 60DLH18 | 718
721 | 430 | 55
59 | | - | | | | 56DLH15 | 533 | 299 | 41 | | 98' LEN | чин | | 72DLH19 | 805 | 521 | 58 | | | 93' LEN | IGTH | | 68DLH16 | 566 | 400 | 38 | 52DLH10 | 251 | 132 | 24 | 68DLH19 | 808 | 526 | 61 | | | | | | 64DLH16
60DLH16 | 568
573 | 378
355 | 41
44 | 52DLH11 | 275 | 144 | 26 | | | | | | 48LH10 | 196 | 99 | 18 | 56DLH16 | 573
576 | 333 | 45 | 52DLH12 | 307 | 158 | 29 | | 101' LEI | NGTH | | | 48LH11
52DLH10 | 212
279 | 106
154 | 20
23 | 72DLH17 | 617 | 451 | 42 | 60DLH12
56DLH12 | 318
3 31 | 197
184 | 27
30 | 52DLH10 | 236 | 120 | 23 | | 52DLH11 | 306 | 169 | 26 | 60DLH17 | 658 | 404 | 48 | 52DLH13 | 373 | 191 | 33 | 52DLH11 | 259 | 132 | 26 | | 48LH13 | 318 | 159 | 29 | 56DLH17
72DLH18 | 663
723 | 379
509 | 51
48 | 60DLH13 | 387 | 238 | 32 | 56DLH12 | 289 | 144 | 29 | | 52DLH12 | 342 | 185 | 29 | 60DLH18 | 723
760 | 456 | 48
56 | 56DLH13 | 401 | 223 | 34 | 60DLH12 | 309 | 185 | 27 | | 56DLH12
48LH14 | 349
375 | 204
187 | 27
32 | 72DLH19 | 847 | 578 | 55 | 60DLH14
56DLH14 | 430
453 | 253
249 | 34
38 | 56DLH12
52DLH13 | 312
351 | 168
174 | 29
33 | | 52DLH13 | 414 | 224 | 33 | 68DLH19 | 850 | 583 | 60 | 64DLH15 | 489 | 317 | 37 | 60DLH13 | 375 | 224 | 32 | | 48LH15 | 430 | 214 | 36 | | | | | 60DLH15 | 505 | 298 | 40 | 56DLH13 | 379 | 204 | 33 | | 60DLH14 | 453 | 281 | 34 | | 96' LEN | NGTH | | 72DLH16 | 531 | 373 | 39 | 52DLH14 | 405 | 194 | 37 | | 52DLH14
56DLH14 | 476
477 | 249
277 | 38
37 | 48LH10 | 185 | 90 | 18 | 64DLH16
60DLH16 | 551
555 | 355
334 | 42
44 | 60DLH14
56DLH14 | 417
427 | 238
228 | 35
37 | | 60DLH15 | 532 | 332 | 38 | 48LH11 | 200 | 91 | 20 | 56DLH16 | 559 | 313 | 46 | 68DLH15 | 449 | 301 | 35 | | 52DLH15 | 533 | 282 | 42 | 52DLH10 | 261 | 140 | 24 | 72DLH17 | 598 | 424 | 43 | 64DLH15 | 475 | 298 | 39 | | 56DLH15 | 545 | 312 | 41 | 52DLH11 | 287 | 153 | 26 | 64DLH17 | 635 | 404 | 46 | 60DLH15 | 490 | 281 | 41 | | 68DLH16
60DLH16 | 578
585 | 417
371 | 38
42 | 48LH13
52DLH12 | 300
320 | 145
168 | 29
29 | 56DLH17
72DLH18 | 643
700 | 356
478 | 51
48 | 60DLH16
72DLH17 | 538
580 | 314
399 | 46 | | 56DLH16 | 588 | 348 | 45 | 60DLH12 | 325 | 205 | 29
27 | 64DLH18 | 733 | 456 | 53 | 64DLH17 | 616 | 380 | 44
49 | | 64DLH17 | 669 | 448 | 46 | 56DLH12 | 338 | 192 | 29 | 60DLH18 | 736 | 428 | 59 | 60DLH17 | 619 | 357 | 52 | | 60DLH17 | 672 | 421 | 49 | 48LH14 | 353 | 171 | 32 | 72DLH19 | 821 | 543 | 55 | 72DLH18 | 679 | 450 | 51 | | 56DLH17
68DLH18 | 678
754 | 395
536 | 51
48 | 52DLH13
60DLH13 | 389
395 | 203
248 | 33
32 | 68DLH19 | 824 | 548 | 60 | 64DLH18
60DLH18 | 711
714 | 430
403 | 56
59 | | 64DLH18 | 773 | 507 | 53 | 48LH15 | 405 | 195 | 36 | | 00' L EN | UCTU | | 72DLH19 | 714 | 511 | 60 | | 60DLH18 | 776 | 476 | 56 | 64DLH14 | 436 | 281 | 32 | | 99' LEN | NGIH | | 68DLH19 | 800 | 516 | 61 | | 68DLH19 | 869 | 609 | 54 | 60DLH14 | 439 | 264 | 34 | 52DLH10 | 246 | 128 | 24 | | | | | | | | | | 52DLH14
56DLH14 | 447
462 | 227
260 | 38
38 | 52DLH11 | 270 | 140 | 26 | | 102' LEI | NGTH | | | | 94' LEN | IGTH | | 60DLH15 | 515 | 311 | 38 | 52DLH12
60DLH12 | 301
315 | 153
193 | 29
27 | 52DLH10 | 231 | 116 | 23 | | 48LH10 | 192 | 96 | 18 | 48LH17 | 525 | 252 | 47 | 56DLH12 | 324 | 178 | 29 | 52DL1110 | 254 | 116
128 | 26 | | 48LH11 | 208 | 103 | 20 | 64DLH16 | 562 | 370 | 41 | 52DLH13 | 366 | 185 | 33 | 52DLH12 | 284 | 140 | 29 | | 52DLH10 | 273 | 150 | 23 | 60DLH16
56DLH16 | 567
570 | 348
326 | 44
45 | 60DLH13 | 383 | 233 | 33 | 56DLH12 | 306 | 163 | 29 | | 52DLH11
48LH13 | 299
312 | 164
154 | 26
29 | 72DLH17 | 610 | 442 | 45
42 | 56DLH13
60DLH14 | 394
426 | 216
248 | 33
34 | 52DLH13
64DLH13 | 344
358 | 170
232 | 33
31 | | 52DLH12 | 334 | 179 | 29 | 64DLH17 | 648 | 421 | 46 | 56DLH14 | 426
444 | 248 | 38 | 60DLH13 | 372 | 219 | 34 | | 56DLH12 | 345 | 200 | 27 | 60DLH17 | 651 | 395 | 49 | 64DLH15 | 484 | 311 | 37 | 52DLH14 | 397 | 189 | 37 | | 48LH14 | 367 | 181 | 32 | 56DLH17
72DLH18 | 656
715 | 371
499 | 51
48 | 60DLH15 | 500 | 292 | 40 | 60DLH14 | 413 | 233 | 35 | | 52DLH13 | 406
422 | 216 | 33
36 | 64DLH18 | 715
748 | 499
476 | 48
53 | 64DLH16
60DLH16 | 545
549 | 348 | 42 | 56DLH14
68DLH15 | 419 | 221 | 38
35 | | 48LH15
60DLH14 | 422 | 208
275 | 36 | 60DLH18 | 752 | 447 | 57 | 72DLH16 | 549
592 | 327
415 | 44
43 | 64DLH15 | 445
470 | 295
292 | 35
39 | | 52DLH14 | 466 | 242 | 37 | 72DLH19 | 838 | 566 | 55 | 64DLH17 | 628 | 395 | 46 | 60DLH15 | 485 | 275 | 41 | | 52DLH14 | 472 | 271 | 37 | 68DLH19 |
841 | 571 | 60 | 56DLH17 | 630 | 345 | 51 | 60DLH16 | 533 | 308 | 46 | | 60DLH15 | 526 | 325 | 38
41 | | 07' 1 5 | ICTU | | 72DLH18
64DLH18 | 693 | 469 | 48 | 72DLH17
64DLH17 | 574
610 | 391 | 45
40 | | 56DLH15
68DLH16 | 539
572 | 306
408 | 38 | | 97' LEN | NGTH | | 60DLH18 | 726
729 | 447
420 | 53
59 | 64DLH17 | 610
613 | 372
350 | 49
52 | | 60DLH16 | 579 | 363 | 41 | 52DLH10 | 256 | 136 | 24 | 72DLH19 | 813 | 532 | 58 | 72DLH18 | 673 | 442 | 51 | | 56DLH16 | 582 | 340 | 45 | 52DLH11 | 281 | 149 | 26 | 68DLH19 | 816 | 537 | 61 | 60DLH18 | 707 | 395 | 59 | | 72DLH17 | 623 | 461 | 42 | 52DLH12 | 314 | 163 | 29 | | | | | 72DLH19 | 789 | 501 | 60 | | 60DLH17
56DLH17 | 665
670 | 412
387 | 49
51 | 60DLH12
56DLH12 | 322
334 | 201
188 | 27
28 | | 100' LE | NGTH | | 68DLH19 | 792 | 506 | 61 | | 72DLH18 | 730 | 520 | 47 | 52DLH13 | 381 | 197 | 33 | 52DLH10 | 241 | 124 | 24 | | 103' LEI | VGTU | | | 60DLH18 | 768 | 466 | 55 | 60DLH13 | 391 | 243 | 32 | 52DLH10 | 264 | 135 | 26 | | 103 LEI | читп | | | 72DLH19 | 856 | 590 | 55 | 60DLH14 | 434 | 258 | 34 | 52DLH12 | 295 | 149 | 29 | 52DLH10 | 227 | 114 | 24 | | 68DLH19 | 859 | 596 | 58 | 52DLH14
56DLH14 | 438
457 | 220
254 | 38
38 | 60DLH12 | 312 | 189 | 27 | 52DLH11 | 249 | 124 | 26 | | | | | | 00DLI114 | 407 | 204 | | 56DLH12 | 318 | 173 | 29 | 52DLH12 | 278 | 135 | 29 | | | | | | | | | | | | | | | | | | | Joist
Type | Allow
Loads
Total | rable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Uniform | Joist
Weight
(lbs/ft.) | Joist
Type | | wable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | vable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | |---|---------------------------------|---------------------------------|----------------------------------|---|---------------------------------|---------------------------------|------------------------------|---|---------------------------------|---------------------------------|-------------------------------|--|--|--|----------------------------------| | 103 | ' LENGT | H (Con | ıt.) | 106 | ' LENGT | H (Cor | nt.) | 109 | ' LENGT | H (Cor | nt.) | 112 | LENGT | H (Con | t.) | | 60DLH12
52DLH13
64DLH13
60DLH13
52DLH14 | 303
338
355
368
390 | 178
164
228
215
184 | 28
33
32
34
38 | 56DLH12
60DLH12
56DLH13
60DLH13
64DLH14 | 284
295
344
358
395 | 145
168
175
203
230 | 29
29
34
34
34 | 60DLH15
72DLH16
64DLH16
72DLH17
60DLH17 | 442
478
495
537
558 | 235
301
287
342
298 | 43
41
46
47
52 | 72DLH17
64DLH17
72DLH18
64DLH18
72DLH19 | 523
555
613
641
718 | 324
309
366
349
415 | 47
52
53
59
61 | | 64DLH14
60DLH14
56DLH14
68DLH15
64DLH15 | 406
409
411
440
466 | 244
229
214
289
287 | 34
37
38
35
39 | 60DLH14
68DLH15
64DLH15
60DLH15
72DLH16 | 398
428
452
467
491 | 216
273
271
255
318 | 37
37
40
43
41 | 64DLH17
60DLH18
64DLH18
72DLH19
68DLH19 | 571
644
659
738
741 | 326
337
369
439
443 | 52
59
59
61
67 | 68DLH19 | 721 113' LEN | 419
NGTH
138 | 67 | | 60DLH15
68DLH16
60DLH16 | 480
522
528 | 270
340
302 | 41
41
46 | 64DLH16
60DLH16
68DLH17 | 509
513
572 | 303
285
365 | 45
46
46 | | 110' LEI | NGTH | | 64DLH12
60DLH13
64DLH13 | 266
316
323 | 156
167
189 | 29
34
34 | | 72DLH17
68DLH17
60DLH17
64DLH18
60DLH18 | 569
588
607
697
700 | 384
386
343
413
388 | 45
47
52
56
59 | 60DLH17
68DLH18
60DLH18
68DLH19 | 590
662
681
762 | 324
412
366
468 | 52
53
59
60 | 56DLH11
60DLH12
60DLH13
60DLH14
64DLH14 | 231
274
333
370
380 | 118
150
181
193
214 | 26
29
34
37
37 | 60DLH14
64DLH14
68DLH15
64DLH15
60DLH16 | 350
370
401
424
451 | 178
203
240
238 | 37
37
39
41
46 | | 72DLH19
68DLH19 | 781
784 | 491
496 | 60
61 | | 107' LEI | | | 72DLH15
68DLH15 | 409
412 | 251
254 | 36
38 | 72DLH16
68DLH16 | 461
476 | 280 282 | 43
45 | | | 104' LEN | IGTH | | 56DLH11
56DLH12
60DLH12 | 244
278
289 | 129
141
163 | 36
29
29 | 60DLH15
64DLH15
72DLH16 | 434
436
473 | 228
251
295 | 43
41
41 | 72DLH17
60DLH17
64DLH17 | 518
519
550 | 318
267
303 | 47
52
52 | | 52DLH10
52DLH11
52DLH12
56DLH12 | 223
244
273
295 | 110
120
132
153 | 24
26
29
30
29 | 60DLH13
64DLH14
68DLH15
64DLH15 | 351
391
424
448 | 197
226
268
266 | 34
34
38
40 | 60DLH16
64DLH16
72DLH17
60DLH17 | 476
491
533
548 | 255
281
336
290 | 46
46
47
52 | 72DLH18
64DLH18
72DLH19
68DLH19 | 607
636
712
714 | 360
343
408
412 | 53
59
62
67 | | 60DLH12
52DLH13
64DLH13 | 300
331
351 | 175
159
224 | 33
32 | 60DLH15
72DLH16
64DLH16 | 458
487
504 | 248
312
298 | 43
41
46 | 68DLH17
64DLH17
60DLH18 | 551
565
632 | 338
320
327
383 | 49
52
59 | | 114' LEI | | | | 56DLH13
60DLH13
52DLH14
64DLH14 | 358
365
382
402 | 186
211
178
239 | 34
34
38
34 | 72DLH17
68DLH17
60DLH17
64DLH17 | 548
566
579
581 | 355
358
315
338 | 46
49
52
52 | 68DLH18
64DLH18
72DLH19
68DLH19 | 637
653
731
734 | 362
431
434 | 56
59
61
67 | 60DLH12
64DLH12
60DLH13
64DLH13 | 256
264
311
321 | 134
153
163
186 | 29
29
34
34 | | 60DLH14
64DLH15
60DLH15
72DLH16 | 405
461
476
501 | 224
281
265
331 | 37
39
43
40 | 68DLH18
60DLH18
64DLH18
68DLH19 | 655
668
671
755 | 405
357
383
459 | 53
59
59
61 | 56DLH11 | 111' LEI | NGTH 115 | 26 | 60DLH14
64DLH14
68DLH15
60DLH15 | 344
367
398
405 | 173
199
236
205 | 37
37
39
43 | | 68DLH16
60DLH16
72DLH17 | 517
523
563 | 333
296
376 | 41
46
45 | | 108' LEI | NGTH | | 56DLH12
60DLH12
64DLH12 | 259
270
271 | 126
146
161 | 30
29
28 | 64DLH15
60DLH16
72DLH16 | 421
444
457 | 234
228
275 | 43
46
43 | | 68DLH17
60DLH17
72DLH18
68DLH18
60DLH18 | 583
601
660
674
694 | 379
337
425
428
380 | 46
52
53
53
59 | 56DLH11
56DLH12
60DLH12
60DLH13
60DLH14 | 239
273
284
345
383 | 125
137
158
191
205 | 26
29
29
34
37 | 56DLH13
60DLH13
64DLH13
60DLH14
64DLH14 | 314
327
329
363
377 | 152
176
196
189
210 | 34
34
33
37
37 | 68DLH16
64DLH16
72DLH17
64DLH17
60DLH18 | 472
474
514
546
589 | 277
262
313
298
394 | 46
46
50
52
59 | | 68DLH19 | 777
105' LEN | 486 | 61 | 64DLH14
72DLH15
68DLH15
64DLH15 | 387
417
420
444 | 222
260
263
261 | 36
36
38
40 | 68DLH15
64DLH15
56DLH16
64DLH16 | 408
432
436
486 | 249
247
214
276 | 38
41
46
46 | 64DLH18
72DLH19
68DLH19 | 630
706
708 | 337
401
404 | 59
64
67 | | 56DLH11
56DLH12
60DLH12 | 253
289
297 | 136
150
171 | 26
29
29 | 60DLH15
72DLH16
64DLH16 | 450
482
500 | 242
307
292 | 43
41
46 | 72DLH17
68DLH17
64DLH17 | 528
546
560 | 330
332
314 | 47
49
52 | | 115' LEI | | | | 64DLH13
56DLH13
60DLH13
64DLH14 | 348
351
361
398
401 | 219
181
207
235
220 | 32
34
34
34
34
37 | 72DLH17
60DLH17
64DLH17
60DLH18
64DLH18 | 542
569
576
656
665 | 349
306
332
346
376 | 46
52
52
59
59 | 72DLH18
60DLH18
64DLH18
72DLH19
68DLH19 | 618
621
647
725
727 | 373
319
356
423
427 | 53
59
59
61
67 | 60DLH12
64DLH12
60DLH13
64DLH13
60DLH14
64DLH14 | 252
259
306
315
338
360 | 131
150
158
181
170
193 | 29
29
34
34
37
37 | | 68DLH15
64DLH15
60DLH15
72DLH16 | 432
457
471
496 | 278
276
260
324 | 37
40
43
40 | 72DLH19
68DLH19 | 745
748
109' LEI | 447
451 | 61
61 | 56DLH11 | 112' LEI | NGTH | 26 | 68DLH15
60DLH15
64DLH15
72DLH16 | 394
398
414
453 | 232
200
228
270 | 39
43
43
43 | | 68DLH16
60DLH16
68DLH17
60DLH17 | 512
518
577
595 | 327
290
372
330 | 42
45
46
52 | 56DLH11
56DLH12
60DLH12 | 235
268
279 | 122
133
154 | 26
29
29 | 56DLH12
60DLH12
64DLH12
56DLH13 | 254
265
269
308 | 123
142
159
149 | 29
29
29
29
33 | 68DLH16
72DLH17
64DLH17
60DLH18 | 467
509
536
578 | 272
307
290
286 | 46
50
52
59 | | 68DLH18
60DLH18
68DLH19 | 668
687
769 | 420
373
477 | 53
59
61 | 56DLH13
60DLH13
60DLH14
64DLH14 | 325
339
376
384 | 161
187
199
218 | 33
34
37
37 | 60DLH13
64DLH13
60DLH14
64DLH14 | 322
326
356
373 | 171
193
183
206 |
34
34
37
37 | 72DLH18
64DLH18
68DLH19 | 597
619
702 | 347
328
397 | 54
59
66 | | 56DLU44 | 106' LEN | | 06 | 72DLH15
68DLH15 | 413
416 | 255
258 | 36
38 | 68DLH15
64DLH15 | 405
428 | 245
242 | 38
41 | | 116' LEI | | | | 56DLH11 | 248 | 133 | 26 | 64DLH15 | 440 | 256 | 41 | 64DLH16 | 482 | 271 | 46 | 60DLH12 | 248 | 128 | 29 | | Joist
Type | | wable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | | vable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | Joist
Type | Allow
Loads
Total | vable
s (PLF)
Uniform | Joist
Weight
(lbs./ft.) | |--|--------------------------|-----------------------------|-------------------------------|--|--------------------------|-----------------------------|-------------------------------|--|--------------------------|-----------------------------|-------------------------------|--|--------------------------|-----------------------------|-------------------------------| | 116 | LENGT | H (Con | t.) | 119 | LENGT | H (Con | t.) | 123' | LENGT | H (Con | t.) | 127' | LENGT | H (Con | ıt.) | | 64DLH12
60DLH13
64DLH13 | 255
301
310 | 146
154
176 | 29
34
34 | 64DLH15
60DLH16
72DLH16 | 387
407
437 | 206
201
252 | 43
46
45 | 64DLH13
68DLH13
64DLH14 | 277
284
316 | 148
168
158 | 34
35
37 | 72DLH15
64DLH16
72DLH16 | 354
382
410 | 188
189
221 | 41
46
47 | | 60DLH14
64DLH14
68DLH15 | 332
354
391 | 165
189
228 | 37
37
39 | 68DLH16
72DLH17
64DLH17 | 452
492
501 | 254
287
262 | 46
49
52 | 68DLH14
68DLH15
72DLH15 | 327
365
366 | 179
201
200 | 38
42
41 | 64DLH17
72DLH17
64DLH18 | 439
461
507 | 215
252
243 | 52
53
59 | | 60DLH15
64DLH15
60DLH16
68DLH16 | 392
407
428
463 | 194
223
217
268 | 43
43
46
46 | 68DLH17
60DLH18
64DLH18
68DLH18 | 509
540
578
589 | 289
259
296
327 | 53
59
59
60 | 72DLH16
68DLH16
64DLH17
68DLH17 | 423
433
468
489 | 236
236
237
268 | 45
49
52
53 | 68DLH18
72DLH18
72DLH19 | 532
540
633 | 276
284
323 | 60
59
67 | | 60DLH17
72DLH17
64DLH17 | 493
505
527 | 247
302
283 | 52
50
52 | 72DLH19
68DLH19 | 676
678 | 368
371 | 67
67 | 64DLH18
68DLH18
72DLH19 | 540
566
654 | 267
304
344 | 59
60
67 | 64DLH12 | 128' LEN | NGTH 109 | 29 | | 60DLH18
64DLH18
68DLH19 | 568
608
696 | 279
320
391 | 59
59
66 | 60DLH12 | 120' LEI
232 | NGTH 115 | 29 | | 124' LEN | NGTH | | 64DLH13
64DLH14
68DLH14 | 257
292
303 | 131
140
159 | 34
37
38 | | | 117' LEN | NGTH | | 64DLH12
60DLH13
64DLH13 | 239
282
291 | 132
139
159 | 29
34
34 | 64DLH12
64DLH13
68DLH13 | 224
273
279 | 119
144 | 29
34
35 | 72DLH14
68DLH15
72DLH15 | 307
337
352 | 166
178
185 | 37
41
41 | | 60DLH12
64DLH12
60DLH13 | 244
251
296 | 124
142
151 | 29
29
34 | 60DLH14
64DLH14
68DLH14 | 310
332
337 | 149
171
190 | 37
37
38 | 64DLH14
68DLH14
68DLH15 | 311
322
360 | 154
175
196 | 37
38
42 | 64DLH16
72DLH16
64DLH17 | 376
407
432 | 185
218
210 | 46
47
52 | | 64DLH13
60DLH14
64DLH14 | 305
327
349 | 171
161
184 | 34
37
37 | 72DLH15
68DLH15
64DLH15 | 375
378
381 | 211
213
201 | 38
40
43 | 72DLH15
64DLH16
72DLH16 | 363
401
420 | 197
203
232 | 41
46
47 | 68DLH17
72DLH17
64DLH18 | 453
457
499 | 238
248
237 | 53
53
59 | | 72DLH15
68DLH15
64DLH15 | 385
387
400 | 222
224
217 | 38
41
43 | 60DLH16
72DLH16
68DLH16 | 400
434
448 | 196
248
250 | 46
45
46 | 68DLH16
64DLH17
68DLH17 | 427
461
481 | 230
231
262 | 49
52
53 | 68DLH18
72DLH18
68DLH19 | 524
536
601 | 269
280
305 | 60
59
67 | | 60DLH16
64DLH16
68DLH16 | 421
450
459 | 211
242
263 | 46
46
46 | 72DLH17
64DLH17
68DLH17 | 488
492
505 | 282
255
284 | 49
52
53 | 64DLH18
68DLH18
72DLH19 | 532
557
649 | 261
297
339 | 59
60
68 | 72DLH19 | 628
1 29 ' LEN | 318 | 67 | | 60DLH17
72DLH17
64DLH17 | 484
501
518 | 241
297
275 | 52
50
52 | 60DLH18
64DLH18
68DLH18 | 531
568
584 | 252
288
321 | 59
59
60 | | 125' LEN | NGTH | | 68DLH13
68DLH14 | 259
299 | 145
155 | 35
38 | | 60DLH18
64DLH18
68DLH18 | 559
598
599 | 272
311
388 | 59
59
60 | 68DLH19 | 673
121' LE I | 365
NGTH | 67 | 64DLH12
64DLH13
64DLH14 | 221
269
306 | 216
141
151 | 29
34
37 | 72DLH14
72DLH15
72DLH16 | 305
349
403 | 163
182
215 | 38
41
49 | | 72DLH19
68DLH19 | 687
690 | 381
384 | 67
67 | 64DLH12
64DLH13 | 235
286 | 129
155 | 29
34 | 68DLH14
68DLH15
72DLH15 | 317
354
360 | 171
191
194 | 38
41
41 | 68DLH17
72DLH17
68DLH18 | 446
454
516 | 232
244
263 | 53
53
60 | | 60DLH12 | 118' LEN
240 | 121 | 29 | 64DLH14
68DLH14
72DLH15 | 326
334
372 | 166
187
207 | 37
38
40 | 64DLH16
72DLH16
68DLH16 | 394
416
420 | 198
229
225 | 46
47
49 | 72DLH18
72DLH19 | 532
623 | 276
313 | 59
67 | | 64DLH12
60DLH13
60DLH14 | 247
291
321 | 138
147
156 | 29
34
37 | 68DLH15
72DLH16
68DLH16 | 375
430
444 | 209
244 | 40
45
49 | 64DLH17
68DLH17
64DLH18 | 454
474
523 | 226
256
255 | 52
53
59 | | 130' LEN | | | | 64DLH14
72DLH15
68DLH15 | 343
382
384 | 179
218
220 | 37
38
41 | 72DLH17
68DLH17
64DLH18 | 484
501
559 | 278
280
282 | 49
53
59 | 68DLH18
72DLH19 | 549
643 | 289
333 | 60
67 | 68DLH13
68DLH14
72DLH14
72DLH15 | 255
294
303
347 | 142
152
171
191 | 35
38
38
41 | | 64DLH15
60DLH16
72DLH16 | 394
414
441 | 211
206
257 | 43
46
45 | 68DLH18
68DLH19 | 579
667 | 316
359 | 60
67 | | 126' LEN | | | 72DLH16
68DLH17
72DLH17 | 401
439
451 | 225
228
256 | 49
55
56 | | 68DLH16
72DLH17
64DLH17 | 456
496
509 | 259
292
268 | 46
50
52 | 64DLH12 | 122' LEI
231 | 125 | 29 | 64DLH12
64DLH13
64DLH14
68DLH14 | 218
264
301
312 | 114
131
147
167 | 29
34
37
38 | 68DLH18
72DLH18
68DLH19 | 508
528
583 | 257
289
291 | 60
59
67 | | 68DLH17
60DLH18
64DLH18 | 513
549
587 | 294
266
304 | 53
59
59 | 64DLH13
68DLH13
64DLH14 | 281
288
321 | 152
171
162 | 34
35
37 | 72DLH15
64DLH16
72DLH16 | 357
388
413 | 191
193
225 | 41
46
47 | 72DLH19 | 619 | 328 | 70 | | 68DLH18
72DLH19
68DLH19 | 594
682
684 | 333
374
377 | 60
67
67 | 68DLH14
72DLH15 | 332
369 | 185
204 | 38
40 | 64DLH17
68DLH17 | 446
467 | 220
249 | 52
53 | 68DLH13 | 252 | 138 | 35 | | | 119' LE | NGTH | | 68DLH15
72DLH16
68DLH16
64DLH17 | 372
427
441
476 | 206
240
242
243 | 42
45
49
52 | 64DLH18
68DLH18
72DLH18
72DLH19 | 515
540
544
638 | 249
283
289
328 | 59
60
59
67 | 68DLH14
72DLH14
68DLH15 | 290
298
322 | 148
167
166 | 38
38
41 | | 60DLH12
64DLH12
60DLH13 | 236
243
286 | 118
135
143 | 29
29
34 | 68DLH17
64DLH18
68DLH18 | 497
549
575 | 275
274
311 | 52
53
59
60 | | 127' LEN | | 67 | 72DLH15
72DLH16
68DLH17 | 342
395
433 | 187
219
222 | 43
49
53 | | 64DLH13
60DLH14
64DLH14 | 295
316
337 | 163
152
174 | 34
37
37 | 72DLH19
68DLH19 | 659
662 | 350
353 | 67
67 | 64DLH12
64DLH13 | 214
260 | 111
134 | 29
34 | 72DLH17
68DLH18
72DLH18 | 445
501
520 | 250
251
283 | 53
59
59 | | 68DLH14
72DLH15
68DLH15 | 340
378
381 | 193
214
217 | 38
38
40 | | 123' LEI | | 00 | 64DLH14
68DLH14
72DLH14 | 296
308
309 | 143
163
168 | 37
38
37 | 68DLH19
72DLH19 | 574
609 | 285
321 | 67
70 | | | | | | 64DLH12 | 228 | 122 | 29 | 68DLH15 | 343 | 182 | 41 | | | | | # Combined K, VS, LH & DLH Series Load Table | 132 LENGTH 136 LENGTH 136 LENGTH 136 LENGTH 137 138 | Joist | | vable | Joist
Weight | Joist | | wable
Is (PLF) | Joist
Weight | Joist | | wable
ls (PLF) | Joist
Weight |
--|--------------------|-------------------|-------------|-----------------|-------------|---------|-------------------|-----------------|-------|-------|-------------------|-----------------| | SEDILH13 | Туре | Total | Uniform | (lbs./ft.) | Туре | Total | Uniform | (lbs/ft.) | Туре | Total | Uniform | | | SEDLH14 | | | | | | | | | | | | E0. | | SEDLHS | 68DLH13
68DLH14 | | | | 68DLH19 | 532 | 254 | 67 | | | | | | 137 LENGTH | 72DLH14 | | | | 72DLH19 | 565 | 286 | 70 | | | | | | ## PROPRISE OF COLUMN STATE | 72DLH15 | | | | 1 | 37' LEN | NGTH | | | | | | | SEDLH17 | 68DLH16 | | 190 | 49 | | | | 00 | | | | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | 68DLH16 | | | | | | | | | | | | | ### ### ### ### ### ### ### ### ### ## | 72DLH17 | | | | | | | | | | | | | 133' LENGTH | 72DLH18 | | | | | | | | | | | | | 133' LENGTH 138' LENGTH 244 | 68DLH19 | | | | 72DLH19 | 557 | 280 | 70 | | | | | | REDLH13 | | | | 70 | 1 | 38' LEI | NGTH | | | | | | | SEDLH14 | | | | | 72DLH14 | 270 | 143 | 38 | | | | | | A | 68DLH13
68DLH14 | | | | | | | | | | | | | ### SERULHIS 331 178 41 1 | 72DLH14 | 290 | 159 | 38 | | | | | | | | | | 130 | | | | | | | | | | | | | | 130 | 68DLH16 | 371 | 186 | 49 | /2DLH19 | 549 | 274 | 70 | | | | | | SEDLH17 | 72DLH16
68DLH17 | | | | 1 | 39' LEN | NGTH | | | | | 47 | | Table Tabl | 72DLH17 | 432 | 239 | 56 | 72DI H14 | 266 | 139 | 38 | | | | | | 134' LENGTH 557 272 67 72DLH16 393 183 49 | 68DLH18
72DLH18 | | | | 72DLH15 | 303 | 156 | 41 | | | | | | 134' LENGTH | 68DLH19 | 557 | 272 | 67 | | | | | | | | | | 134' LENGTH | /2DLH19 | 591 | 306 | 70 | 72DLH18 | 463 | 236 | 59 | | | | | | \$80LH13 | | 134' LEN | NGTH | | 72DLH19 | 541 | 541 | 70 | | | | | | 135 LENGTH 225 155 38 72DLH14 225 153 38 22DLH15 326 174 41 72DLH17 391 205 53 72DLH18 370 205 49 72DLH17 391 205 53 72DLH18 457 231 59 72DLH19 533 263 70 70 70 70 70 70 70 7 | 68DLH13 | 241 | 130 | 35 | 140' LENGTH | | | | | | | | | SEDILH15 308 155 | 68DLH14 | | | | | | 136 | | | | | | | 22DLH15 326 174 | 68DLH15 | | | | | | | | | | | | | ### Page 12 | 72DLH15 | | | | | 391 | 205 | | | | | | | 141' LENGTH | 72DLH16 | 378 | 205 | 49 | | | | | | | | | | 135' LENGTH | 72DLH17
68DLH18 | | | | | | | | | | | | | 135' LENGTH 136' LENGTH 136' LENGTH 136' LENGTH 136' LENGTH 136' LENGTH 136' LENGTH 137' 149 38 38 38 38 38 38 38 38 38 38 38 38 38 | 72DLH18 | 497 | 265 | 59 | | 41' LEI | NGTH | | | | | | | 135' LENGTH 72DLH16 | 72DLH19 | | | | | | | | | | | | | 72DLH18 450 227 59 72DLH19 526 257 70 72DLH15 303 152 42 72DLH15 322 171 42 72DLH16 360 178 49 72DLH16 360 178 49 72DLH16 338 171 49 72DLH16 338 171 49 72DLH17 420 228 53 72DLH17 420 228 53 72DLH18 490 258 59 72DLH18 490 258 59 72DLH19 540 260 67 72DLH19 573 293 70 72DLH19 573 293 70 72DLH10 334 169 49 72DLH11 259 148 41 72DLH12 250 131 38 72DLH15 321 147 42 72DLH16 338 171 49 72DLH17 381 196 53 72DLH19 518 251 70 72DLH10 334 169 49 72DLH11 269 133 38 72DLH11 250 148 41 72DLH16 334 169 49 72DLH16 368 196 49 72DLH15 317 167 42 72DLH16 368 196 49 72DLH16 368 196 49 72DLH16 368 196 49 72DLH17 414 224 56 72DLH16 329 165 49 | | | | | | | | | | | | | | 78DLH13 237 127 35 78DLH14 273 135 38 72DLH14 273 152 38 72DLH15 303 152 42 72DLH16 360 178 49 72DLH16 373 200 49 72DLH17 408 203 53 72DLH18 490 228 53 72DLH18 490 228 53 72DLH18 490 258 59 72DLH19 518 251 70 72DLH19 573 293 70 136' LENGTH 72DLH19 573 293 70 143' LENGTH 72DLH19 573 293 70 143' LENGTH 72DLH14 252 128 38 72DLH19 573 293 70 143' LENGTH 72DLH16 334 169 49 72DLH17 376 191 53 72DLH18 438 217 59 72DLH19 511 247 70 72DLH15 317 167 42 72DLH16 368 1 | | 135' LEN | NGTH | | 72DLH17 | 386 | 200 | 53 | | | | | | 142' LENGTH 281 152 38 42 22DLH15 303 152 42 42 42 42 42 42 42 | 68DLH13 | | | | | | | | | | | | | 38DLH15 303 152 42 72DLH15 322 171 42 72DLH16 360 178 49 72DLH16 373 200 49 88DLH17 408 203 53 72DLH17 420 228 53 72DLH18 490 258 59 72DLH18 490 258 59 72DLH19 573 293 70 136' LENGTH 136' LENGTH 136' LENGTH 136' LENGTH 136' LENGTH 143' LENGTH 143' LENGTH 143' LENGTH 72DLH14 252 128 38 72DLH15 286 143 41 72DLH16 334 169 49 72DLH18 438 217 59 72DLH18 438 217 59 72DLH18 438 217 59 72DLH19 511 247 70 | 68DLH14 | | | | | 4011 | UOT! | | | | | | | 38DLH16 360 178 49 32DLH16 373 200 49 38DLH17 408 203 53 38DLH18 472 228 53 38DLH18 472 230 60 38DLH18 490 258 59 38DLH19 540 260 67 72DLH19 573 293 70 136' LENGTH 136' LENGTH 136' LENGTH 72DLH18 444 252 128 38 72DLH19 573 293 70 143' LENGTH 72DLH14 252 128 38 72DLH15 286 143 41 72DLH16 334 169 49 72DLH17 376 191 53 72DLH18 438 217 59 72DLH18 438 217 59 72DLH18 438 217 59 72DLH18 438 217 70 72DLH19 511 247 70 72DLH19 511 247 70 72DLH19 511 247 70 <td>68DLH15</td> <td>303</td> <td>152</td> <td>42</td> <td></td> <td>42 LE</td> <td>NGTH</td> <td></td> <td></td> <td></td> <td></td> <td></td> | 68DLH15 | 303 | 152 | 42 | | 42 LE | NGTH | | | | | | | 72DLH16 373 200 49 78BDLH17 408 203 53 72DLH16 338 171 49 72DLH17 420 228 53 72DLH18 490 258 59 72DLH19 540 260 67 72DLH19 573 293 70 136' LENGTH 72DLH14 252 128 38 72DLH15 286 143 41 72DLH16 334 169 49 72DLH16 334 169 49 72DLH17 376 191 53 72DLH18 438 217 59 72DLH18 438 217 59 72DLH15 317 167 42 72DLH16 368 196 49 369 198 53 72DLH16 368 196 49 | 72DLH15 | | | | | | | | | | | | | 136 143 144 145 | 72DLH16 | | | | | | | | | | | | | 136' LENGTH 138DLH13 234 124 35 235 120 128 38 234 169 49 230 141 27 149 38 236 141 27 149 38 240 141 27 149 38 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 141 34 169 49 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 252 140 41 | 68DLH17 | | 203 | | 72DLH17 | 381 | 196 | 53 | | | | | | 72DLH18 490 258 59 72DLH19 573 293 70 136' LENGTH 72DLH14 252 128 38 72DLH15 286 143 41 72DLH16 334 169 49 72DLH16 334 169 49 72DLH17 376 191 53 72DLH18 438 217 59 72DLH18 438 217 59 72DLH15 317 167 42 72DLH16 354 174 49 72DLH16 354 174 49 72DLH16 368 196 49 72DLH16 368 196 49 72DLH16 368 196 49 72DLH17 403 198 53 72DLH14 248 125 38 72DLH15 290 148 41 72DLH16 368 196 49 72DLH16 368 196 49 72DLH17 414 224 56 72DLH16 329 165 49 | 68DLH18 | | 230 | | | | | | | | | | | 72DLH19 573 293 70 136' LENGTH 72DLH14 252 128 38 72DLH15 286 143 41 72DLH16 334 169 49 72DLH17 376 191 53 72DLH14 277 149 38 72DLH15 299 148 41 72DLH15 317 167 42 72DLH16 368 196 49 | 72DLH18
68DLH19 | | 258
260 | | | | | | | | | | | 136' LENGTH 72DLH15 | 72DLH19 | | | | | | | | | | | | | 72DLH16 334 169 49
72DLH17 376 191 53 72DLH18 438 217 59 72DLH15 299 148 41 72DLH15 317 167 42 72DLH16 368 196 49 72DLH16 368 196 49 72DLH16 368 196 49 72DLH16 368 196 49 72DLH17 403 198 53 72DLH14 248 125 38 72DLH15 280 140 41 72DLH16 329 165 49 | | 136' LEN | IGTH | | | | | | | | | | | 58DLH14 269 133 38 72DLH18 438 217 59 72DLH15 299 148 41 72DLH16 354 174 49 72DLH16 368 196 49 72DLH16 368 196 49 72DLH16 403 198 53 72DLH17 414 224 56 72DLH18 438 217 70 70 70 70 70 70 70 70 70 70 70 70 70 | | | _ | 35 | 72DLH16 | 334 | 169 | 49 | | | | | | 72DLH14 277 149 38 38 38 38 38 38 38 31 317 167 42 38 317 167 42 38 317 167 42 38 317 167 42 38 317 167 42 317 167 42 317 167 42 317 167 42 317 167 42 317 167 42 317 167 42 317 167 167 167 167 167 167 167 167 167 1 | 68DLH14 | 269 | 133 | | | | | | | | | | | 72DLH15 317 167 42
58DLH16 354 174 49
72DLH16 368 196 49
58DLH17 403 198 53
72DLH14 248 125 38
72DLH15 282 140 41
72DLH16 329 165 49 | 72DLH14
68DLH15 | | _ | | | | | | | | | | | 72DLH16 368 196 49 72DLH17 403 198 53 72DLH17 414 224 56 72DLH15 282 140 41 72DLH18 465 225 60 | 72DLH15 | 2DLH15 317 167 42 | | | 144' LENGTH | | | | | | | | | 72DLH17 414 224 56 72DLH15 282 140 41 72DLH18 465 225 60 72DLH16 329 165 49 | 72DLH16 | 368 | 196 | 49 | | | | 38 | | | | | | | 72DLH17 | | | | 72DLH15 | 282 | 140 | 41 | | | | | | | 68DLH18 | 465 | 225 | 60 | | | | | | | | | # **CODE OF STANDARD PRACTICE** # FOR STEEL JOISTS AND JOIST GIRDERS Adopted by the Steel Joist Institute April 7, 1931 Revised to May 18, 2010 - Effective December 31, 2010 | SECTION 1 | | |-----------|--| | GENERAL | | #### 1.1 SCOPE The practices and customs set forth herein are in accordance with good engineering practice, tend to ensure safety in steel joist and Joist Girder construction, and are standard within the industry. There shall be no conflict between this code and any legal building regulation. This code shall only supplement and amplify such laws. Unless specific provisions to the contrary are made in a contract for the purchase of steel joists or Joist Girders, this code is understood to govern the interpretation of such a contract. #### 1.2 APPLICATION This Code of Standard Practice is to govern as a standard unless otherwise covered in the architects' and engineers' plans and specifications. #### 1.3 DEFINITIONS **Add-Load.** A single vertical concentrated load which occurs at any one panel point along the joist chord. This load is in addition to any other gravity loads specified. **Bend-Check Load.** A vertical concentrated load used to design the joist chord for the additional bending stresses resulting from this load being applied at any location between the joist panel points. This load shall already be accounted for in the specified joist designation load, uniform load, or Add-load and is used only for the additional bending check in the chord and does not contribute to the overall axial forces within the joist. An ideal use of this is for incidental loads which have already been accounted for in the design loading but may induce additional bending stress due to this load occurring at any location along the chord. **Buyer.** The entity that has agreed to purchase material from the manufacturer and has also agreed to the terms of sale. **Erector.** The entity that is responsible for the safe and proper erection of the materials in accordance with all applicable codes and regulations. Material. Steel joists, Joist Girders and accessories as provided by the seller. Owner. The entity that is identified as such in the contract documents. Placement Plans. Drawings that are prepared depicting the interpretation of the contract documents requirements for the material to be supplied by the seller. These floor or roof plans are approved by the specifying professional, buyer, or owner for conformance with the design requirements. The seller uses the information contained on these drawings for final material design. A unique piece mark number is typically shown for the individual placement of the steel joists. Joist Girders and accessories along with sections that describe the end bearing conditions and minimum attachment required so that material is placed in the proper location in the field. **Seller.** A company certified by the Steel Joist Institute engaged in the manufacture and distribution of steel joists, Joist Girders and accessories. **Specifying Professional.** The licensed professional who is responsible for sealing the building contract documents, which indicates that he or she has performed or supervised the analysis, design and document preparation for the structure and has knowledge of the load-carrying structural system. **Structural Drawings.** The graphic or pictorial portions of the contract documents showing the design, location and dimensions of the work. These documents generally include plans, elevations, sections, details, connections, all loads, schedules, diagrams and notes. #### 1.4 DESIGN In the absence of ordinances or specifications to the contrary, all designs prepared by the **specifying professional** shall be in accordance with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. #### 1.5 RESPONSIBILITY FOR DESIGN AND ERECTION When material requirements are specified, the seller shall assume no responsibility other than to furnish the items listed in Section 5.2(a). When material requirements are not specified, the seller shall furnish the items listed in Section 5.2(a) in accordance with Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption, and this code. Pertinent design information shall be provided to the seller as stipulated in Section 6.1. The seller shall identify material by showing size and type. In no case shall the seller assume any responsibility for the erection of the item furnished. #### 1.6 PERFORMANCE TESTS FOR K-SERIES STEEL JOIST CONSTRUCTION When a performance test on a joist is required, the following criteria shall be used: - a) The performance test load shall be the maximum factored uniformly distributed downward design load for the selected joist. - (1) For a **K**-Series joist, this is the TOTAL safe factored uniformly distributed load-carrying capacity tabulated in the Standard LRFD Load Table for the specific joist size and span. - (2) For a **K**-Series joist with factored loading conditions other than found in the Standard LRFD Load Table, this is the LRFD Load Combination resulting in the highest uniformly distributed downward factored design load. - (3) For a K-Series joist with loading conditions other than found in the Standard ASD Load Table, this is the ASD Load Combination resulting in the highest uniformly distributed downward design load multiplied times - b) Joist self-weight and the weight of all test materials shall be included in the calculation of applied performance test loading as appropriate for the joist during testing. - c) Loading shall be uniformly distributed across the full length of the joist top chord, and the load application shall maintain uniform distribution throughout the test. At any stage during the application of the test loading, the test load shall not be distributed in such a manner as to result in any joist component being subjected to a higher proportion of force than intended by the joist design. - d) If tested as a panel assembly, the joists shall be tested in pairs with deck, deck attachments, and bridging installed per the approved joist and deck placement plans. All bottom chord horizontal bridging rows shall be terminated by bracing back to the top chord of the adjacent joist or by a lateral restraint system which does not inhibit the vertical deflection of the test joist. - e) If tested singly, in a load test machine apparatus, the joist chords shall be braced to prevent lateral movement, without inhibiting vertical displacement. The joist top chord shall have lateral braces located at equal spacing of no more than 36 inches (914 mm) on center. The joist bottom chord shall have lateral braces located, at minimum, per the bottom chord bridging locations shown on the approved joist placement plan. - f) The performance test loading shall be applied at a rate of no greater than 25 plf per minute and shall be sustained for no less than 15 minutes. After the maximum test load has been removed for a minimum of 10 minutes, the remaining vertical displacement at midspan shall not exceed 20% of the vertical midspan deflection sustained under the full performance test load. - g) All costs associated with such testing shall be borne by the purchaser. - h) Joists that have been designed and manufactured and have satisfied the above performance test criteria shall be considered to satisfy the intent of the **K**-Series Standard Specification, and shall be considered safe for use in construction. No further proof of strength of individual joist components or connections is required. # **SECTION 2** # JOISTS, JOIST GIRDERS, AND ACCESSORIES #### 2.1 STEEL JOISTS AND JOIST GIRDERS Steel joists and Joist Girders shall carry the designations and meet the requirements of the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. **K**-Series joists are furnished with parallel chords only and with a standard end bearing depth of 2 1/2 inches (64 mm). Joist bearing seat depths greater than 2 1/2 inches (64 mm) are available when requirements warrant deeper bearing seats. Conditions where a bearing seat depth of more than 2-1/2 inches (64 mm) may be required include: - Sloped joists; - Mixing K-Series and LH-Series products at a common interior support; - Masonry supports with a steel bearing plate more than 1/2 inch (13 mm) from the face of the wall. LH- and DLH-Series joists are furnished either underslung or square ended, with top chords either parallel, pitched one way or pitched two ways. Underslung types are furnished with minimum
end bearing depths as shown in Table 2-1. A standard maximum joist bearing seat width (perpendicular to the joist length) is provided. This width shall be permitted to vary based on the joist design and manufacturer. For sloped joist bearing seats refer to the sloped seat requirements tables in the Accessories and Details section of this catalog. Because LH- and DLH-Series joists may have exceptionally large end reactions, it is recommended that the supporting structure be designed to provide a nominal minimum unit bearing pressure of 750 pounds per square inch (5171 kilo Pascals). It is not recommended that a **DLH**-Series joist that exceeds 72 inches (1829 mm) deep and has a span greater than 80 feet (24384 mm) be used in a bottom bearing configuration. **TABLE 2-1** | STANDARD END BEARING SEAT DEPTH AND STANDARD MAXIMUM SEAT WIDTH | | | | | | | | | | |---|--------------------|--------------------------|-------------------------|--|--|--|--|--|--| | JOIST SERIES | SECTION
NUMBER* | MINIMUM BEARING
DEPTH | MAXIMUM SEAT
WIDTH** | | | | | | | | K | ALL | 2 ½" (64 mm) | 6" (152 mm) | | | | | | | | LH/DLH | 2 to 17, incl. | 5" (127 mm) | 8" (229 mm) | | | | | | | | DLH | 18 to 20, incl. | 7 ½" (191 mm) | 12" (305 mm) | | | | | | | | DLH | 21 to 25, incl. | 7 ½" (191 mm) | 13" (330 mm) | | | | | | | | | | | | | | | | | | ^{*}REFER TO LAST DIGIT(S) OF JOIST DESIGNATION **THE SEAT WIDTH MAY VARY BASED ON DESIGN Joist Girders are furnished either underslung or square ended with top chords either parallel, pitched one way or pitched two ways. Underslung types are furnished with a standard end bearing depth of 7 1/2 inches (191 mm). Joist Girders shall be permitted to have either parallel chords or a top chord pitch of up to 1/2 inch per foot (1:24). The nominal depth of a pitched Joist Girder is taken at the center of the span. Joist Girder bearing seat widths vary depending on the Joist Girder size and shall be permitted to be up to 13" (330 mm) wide. The supporting structural member shall be made wide enough to accommodate the seat widths. #### 2.2 JOIST LOCATION AND SPACING The maximum joist spacing shall be in accordance with the requirements of the Standard Specifications Load Tables & Weight Tables of latest adoption. Where sidewalls, wall beams or tie beams are capable of supporting the floor slab or roof deck, the first adjacent joists may be placed one full space from these members. Joists are provided with camber and may have a significant difference in elevation with respect to the adjacent structure because of this camber. This difference in elevation should be given consideration when locating the first joist adjacent to a side wall, wall beam or tie beam. Open Web Steel Joists, **K**-Series, should be placed no closer than 6 inches (152 mm) to supporting walls or members. Where partitions occur parallel to joists, there shall be at least one joist provided under each such partition, and more than one such joist shall be provided if necessary to safely support the weight of such partition and the adjacent floor, less the live load, on a strip of floor one foot (305 mm) in width. When partitions occur perpendicular to the joists, they shall be treated as concentrated loads, and joists shall be investigated as indicated in Section 6.1. #### 2.3 SPECIFYING DESIGN LOADS Neither the Steel Joist Institute nor the joist manufacturer establishes the loading requirements for which structures are designed. The specifying professional shall provide the nominal loads and load combinations as stipulated by the applicable code under which the structure is designed and shall provide the design basis (ASD or LRFD). The specifying professional shall calculate and provide the magnitude and location of ALL JOIST and JOIST GIRDER LOADS. This includes all special loads (drift loads, mechanical units, net uplift, axial loads, moments, structural bracing loads, or other applied loads) which are to be incorporated into the joist or Joist Girder design. For Joist Girders, reactions from supported members shall be clearly denoted as point loads on the Joist Girder. When necessary to clearly convey the information, a Load Diagram or Load Schedule shall be provided. The specifying professional shall give due consideration to the following loads and load effects: - 1. Ponded rain water. - 2. Accumulation of snow in the vicinity of obstructions such as penthouses, signs, parapets, adjacent buildings, etc. - 3. Wind. - 4. Type and magnitude of end moments and/or axial forces at the joist and Joist Girder end supports shall be shown on the structural drawings. For moment resisting joists or Joist Girders framing at or near the top of a column, due consideration shall be given to extend the column length to allow a plate type connection between the top of the joist or Joist Girder top chord and the column. Avoid transferring joist or Joist Girder end moments and axial forces through the bearing seat connection. A note shall be provided on the structural drawings stating that all moment resisting joists shall have all dead loads applied to the joist <u>before</u> the bottom chord struts are welded to the supporting connection whenever the moments provided do not include dead load. The top and bottom chord moment connection details shall be designed by the specifying professional. The joist designer shall furnish the specifying professional with the joist detail information if requested. The nominal loads, as determined by the specifying professional, shall not be less than that specified in the applicable building codes. Where concentrated loads occur, the magnitude and location of these concentrated loads shall be shown on the structural drawings when, in the opinion of the specifying professional, they shall require consideration by the joist manufacturer. For nominal concentrated loads, which have been accounted for in the specified uniform design loads, a "strut" to transfer the load to a panel point on the opposite chord shall not be required provided that the sum of the concentrated loads within a chord panel does not exceed 100 pounds and the attachments are concentric to the chord. #### (a) Specifying Joist Design Loads The Steel Joist Institute Load Tables are based on uniform loading conditions and are valid for use in selecting joist sizes for gravity loads that can be expressed in terms of "pounds per linear foot" (kiloNewtons per meter) of joist. The specifying professional shall use one of the five options described below that allows: - The estimator to price the joists. - The joist manufacturer to design the joists properly. - The owner to obtain the most economical joists. **Option 1**: Select a joist designation from the Standard Load Table (or specify a joist type using a uniform load in the designation) which has been determined to be adequate for all design loads. The shear and moment envelope resulting from the selected uniform load shall meet the actual shear and moment requirements. Thus, this option alone may not be adequate if large concentrated loads need to be designed for. Option 2: Select a joist designation from the Standard Load Table (or specify a joist type using a uniform load in the designation) and also provide the load and location of any additional loads on the structural plan with a note "Joist manufacturer shall design joists for additional loads at locations shown." This option works well for a few added loads per joist with known magnitude and locations. **Option 3**: For additional point loads with exact locations <u>not</u> known along the joist or for incidental loads, any one, or both, of the following can be specified on the structural plan in addition to option 1 or 2 above: - a) "Design for a (__) lb. concentrated load located at any one panel point along the joist". This is referred to as an "Add-Load". - b) "Design for additional bending stresses resulting from a (__) lb. concentrated load located at any location along (___) chord". This is referred to as a "Bend-Check" and can be specified on top chord, bottom chord, or both top and bottom chords. This can be used when the concentrated load is already accounted for in the joist designation, uniform load, or specified Add-Load yet this specified amount of load shall be permitted to also be located at any location between panel points. The additional bending stresses as a result of this load are then designed for. A Bend-Check load shall not exceed (Add-Load + 400 lbs.) A Bend-Check load can be specified by itself without an Add-Load. - c) Both (a) and (b) above can be specified with equal concentrated loads for each; or simply denote "Design joist for a (__) lb. concentrated load at any location along the (___) chord." #### Example uses: - Specifying professional selects a standard joist capable of carrying a 500 lb. RTU. However, the location and exact frame size is not yet known but the frame load shall result in two- 250 lbs. point loads at least 5'-0" apart. Specify a 250 lb. Bend-Check - Standard joist specified but not selected for 500 lb. RTU load, location not known. Specify a 500 lb. Add-Load and 250 lb. Bend-check. - Standard SJI joist selected to carry collateral load of 3 psf. Specifying professional wants bending from 150 lb. incidental loads to also be designed for. **Specify a 150 lb. Bend-Check.** **Option 4**: Select a KCS joist using moment and end reaction without specifying added loads or diagrams. This option works well for concentrated loads for which exact locations are not known or for multiple loading. - a) Determine the maximum moment. - b) Determine the maximum end reaction (shear). - c) Select the required KCS joist that provides the required moment and end reaction (shear). Note that the top chord end panel is designed for axial load based on the force in the first tension web, which is based on the specified end reaction. A uniform load
of 825 plf (12030 N/m) LRFD or 550 plf (8020 N/m) ASD is used to check end panel bending. If the end panel loading exceeds this, reduce the joist spacing or go to Option 5. - d) Specify on the structural drawings that an extra web shall be field applied at all concentrated loads not occurring at panel points. #### **OPTION 4 - ASD EXAMPLE 1: OPTION 4 - LRFD EXAMPLE 1:** U.S. CUSTOMARY UNITS AND (METRIC UNITS) **U.S. CUSTOMARY UNITS AND (METRIC UNITS)** 1000 lbs (4.45 kN) 1500 lbs (6.67 kN) 8.0 ft 8.0 ft (2438 mm) (2438 mm) W = 240 plf (3603 N/m) W = 360 plf (5254 N/m)L = 40.0 ft (12192 mm) L = 40.0 ft (12192 mm) (L = Design Length) (L = Design Length) R_L R_R M = 625 k-in. (70.6 kN-m)M = 938 k-in. (105.9 kN-m) $R_L = 5600 \text{ lbs } (24.9 \text{ kN}), R_R = 5000 \text{ lbs } (22.2 \text{ kN})$ $R_L = 8400 \text{ lbs } (37.37 \text{ kN}), R_R = 7500 \text{ lbs } (33.36 \text{ kN})$ Select a 22KCS3, M = 987 k-in. (111.5 kN-m) Select a 22KCS3, M = 658 k-in. (74.3 kN-m) R = 9900 lbs (44.0 kN) R = 6600 lbs (29.3 kN)Bridging section no. 9 for L = 40 ft. (12192 mm) Bridging section no. 9 for L = 40 ft. (12192 mm) Use 22K9 to determine bridging and stability requirements. Use 22K9 to determine bridging and stability requirements. Since a standard KCS Joist can be selected from the load Since a standard KCS Joist can be selected from the load table a load diagram is not required. table a load diagram is not required. #### **OPTION 4 - ASD EXAMPLE 2:** #### **U.S. CUSTOMARY UNITS AND (METRIC UNITS)** # 300 lbs (1.33 kN) 800 lbs (3.56 kN) W = 160 plf (2335 N/m) 500 lbs (2.22 kN) W = 270 plf (3940 N/m) 3.0 ft (914 mm) 7.0 ft (2134 mm) R_R M = 443 k-in. (50.1 kN-m) $R_L = 5000 \text{ lbs} (22.24 \text{ kN}), R_R = 5340 \text{ lbs} (23.75 \text{ kN})$ Select a 22KCS2, M = 488 k-in. (55.1 kN-m) R = 5900 lbs (26.2 kN) Bridging section no. 6 for L = 30 ft. (9144 mm) Use 22K6 to determine bridging and stability requirements. Since the maximum uniform load of 430 plf [6275 N/m) (270 plf (3940 N/m) + 160 plf (2335 N/m)] does not exceed the maximum KCS Joist uniform load of 550 plf (8020 N/m) and a standard KCS Joist can be selected from the load table, a load diagram is not required. #### **OPTION 4 - LRFD EXAMPLE 2:** #### U.S. CUSTOMARY UNITS AND (METRIC UNITS) M = 664 k-in. (75.03 kN-m) $R_L = 7500 \text{ lbs } (33.36 \text{ kN}), R_R = 8010 \text{ lbs } (35.63 \text{ kN})$ Select a 22KCS2, M = 732 k-in. (82.64 kN-m) R = 8850 lbs (39.3 kN) Bridging section no. 6 for L = 30 ft. (9144mm) Use 22K6 to determine bridging and stability requirements. Since the maximum *factored* uniform load of 645 plf (9413 N/m) (405 plf (5911 N/m) + 240 plf (3503 N/m)) does not exceed the maximum KCS Joist uniform load of 825 plf (12030 N/m) and a standard KCS Joist can be selected from the load table, a load diagram is not required. <u>Option 5</u>: Specify a SPECIAL joist designation when the joist includes more complex loading or for conditions which need consideration of multiple potentially controlling load combinations. - a) Provide a load diagram and/or enough information on the drawings to clearly define ALL loads. - b) If the loading criteria are too complex to adequately communicate on the drawings or with a simple load diagram, then the specifying professional shall provide a load schedule along with the appropriate load combinations. Regardless of where the loads are shown, unfactored design loads broken down by load categories shall be provided in order to design the joists correctly with applicable load combinations. Place the designation (e.g. 28K SP or 28LH SP) with the following note: "Joist manufacturer to design joist to support loads as shown." #### **CAUTION FOR OPTIONS 1 thru 5 ABOVE:** - 1. If a K-Series joist is being specified, the specifying professional shall compare the equivalent uniform loads derived from the maximum moment and shear to the uniform loads tabulated in the K-Series Load Table. An equivalent unfactored uniform load in excess of 550 plf (8020 N/m) or a maximum unfactored end reaction exceeding 9200 lbs. (40.9 kN) indicates that the specifying professional shall use additional joists to reduce the loading or use an LH-Series joist and make provisions for 5 inch (127 mm) deep bearing seats. - 2. If the joist has not been designed for localized accumulation of loads which results in a point or concentrated load, this load attachment shall be made at top or bottom chord panel points. Therefore, specify on the structural drawings, "Where concentrated loads do not occur at panel points, an extra web shall be field applied from the point of attachment to a panel point on the opposite chord". #### (b) Specifying Joist Girder Design Loads The Steel Joist Institute's Design Guide ASD or LRFD Weight Tables for Joist Girders are based on uniformly spaced panel point loading conditions and are valid for use in selecting Joist Girder sizes for gravity conditions that can be expressed in kips (kiloNewtons) per panel point on the Joist Girder. Note that anything other than point loads shall be shown unfactored or in a schedule. For a given Joist Girder span, the specifying professional first determines the number of joist spaces. Then the panel point loads are calculated and a depth is selected. The information provided in the tables gives the Joist Girder weight in pounds per linear foot (kiloNewtons per meter) for various depths and loads. - The purpose of the Joist Girder Design Guide Weight Table is to assist the specifying professional in the selection of a roof or floor support system. - 2. It is not necessary to use only the depths, spans, or loads shown in the tables. - Holes in chord elements present special problems which shall be considered by both the specifying professional and the Joist Girder Manufacturer. The sizes and locations of such holes shall be clearly indicated on the structural drawings. - 4. Live load deflection rarely governs because of the relatively small span to depth ratios of Joist Girders. However, it is recommended that a breakdown of the point loads, by load category (i.e. TL/LL), be provided so specified deflection requirements and load combinations can be properly accounted for in design. ### Example using Allowable Strength Design (ASD) and U. S. Customary units: Number of Joist Spaces Given 42'-0" x 50'-0" bay. Joists spaced on 5'-3" centers Load in Kips at Each Panel Point = 30 psf Live Load Depth in Inches Dead Load = 15 psf (includes the approximate Joist Girder weight) Total Load = 45 psf Note: Web configuration may vary from that shown. Contact joist manufacturer if exact layout must be known. - 1. Determine number of actual joist spaces (N). In this example, N = 8. - 2. Compute total load: Total load = $5.25 \times 45 \text{ psf} = 236.25 \text{ plf}$ - Joist Girder Section: (Interior) - a) Compute the factored concentrated load at top chord panel points $P = 236.25 \times 50 = 11.813 \text{ lbs} = 11.9 \text{ kips}$ (use 12K for depth selection). b) Select Joist Girder depth: Refer to the ASD Joist Girder Design Guide Weight Table for the 42'-0" span, 8 panel, 12.0K Joist Girder. The rule of about one inch of depth for each foot of span is a good compromise of limited depth and economy. Therefore, select a depth of 44 inches. - c) The Joist Girder shall then be designated 44G8N11.9K. - The ASD Joist Girder Design Guide Weight Table shows the weight for a 44G8N12K as 49 pounds per linear foot. The designer should verify that the weight is not greater than the weight assumed in the Dead Load above. #### Example using Load and Resistance Factor Design (LRFD) and U. S. Customary units: Given 42'-0" x 50'-0" bay. Joists spaced on 5'-3" centers Live Load = $30 \text{ psf} \times 1.6$ Dead Load = 15 psf x 1.2 (includes the approximate Joist Girder weight) Total Load = 66 psf (factored) Web configuration may vary from that shown. Contact joist manufacturer if exact layout must be known. - Determine number of actual joist spaces (N). In this example, N = 8. - Compute total factored load: Total load = $5.25 \times 66 \text{ psf} = 346.50 \text{ plf}$ - 3. Joist Girder Section: (Interior) - Compute the factored concentrated load at top chord panel points $P = 346.5 \times 50 = 17.325 \text{ lbs} = 17.4 \text{ kips}$ (use 18K for depth selection). Select Joist Girder depth: Refer to the LRFD Joist Girder Design Guide Weight Table for the 42'-0" span, 8 panel, 18.0K Joist Girder. The rule of about one inch of depth for each foot of span is a good compromise of limited depth and economy. Therefore, select a depth of 44 inches. - c) The Joist Girder shall then be designated 44G8N17.4F. Note that the letter "F" is included at the end of the designation to clearly indicate that this is a factored load. - d) The LRFD Joist Girder Design Guide Weight Table shows the weight for a 44G8N18.0F as 49 pounds per linear foot. The designer should verify that the weight is not greater than the weight assumed in the Dead Load above. e) Check live load deflection: Live load = 30 psf x 50 ft. = 1500 plf Approximate Joist Girder moment of inertia = 0.027 NPLd $= 0.027 \times 8 \times 11.9 \times 42 \times 44 = 4750 \text{ in.}^4$ Allowable deflection for plastered ceilings = L/360 = $$\frac{42(12)}{360}$$ = 1.40 in. $$\Delta = 1.15 \left[\frac{5 \, w \, L^4}{384 \, EI} \right] = \frac{1.15 \left(5 \right) \! \left(1.500 / 12 \right) \! \left[\left(42 \right) \! \left(12 \right) \right]^4}{384 \left(29000 \right) \! \left(4750 \right)}$$ = 0.88 in. <1.40 in., Okay e) Check live load deflection: Live load = 30 psf x 50 ft. = 1500 plf Approximate Joist Girder moment of inertia = 0.018 NPLd $= 0.018 \times 8 \times 17.4 \times 42 \times 44 = 4630 \text{ in.}^4$ Allowable deflection for plastered ceilings = L/360 = $$\frac{42(12)}{360}$$ = 1.40 in. $$\Delta = 1.15 \left[\frac{5 \text{ wL}^4}{384 \text{ EI}} \right] = \frac{1.15 (5)(1.500/12)[(42)(12)]^4}{384 (29000)(4630)}$$ = 0.90 in. < 1.40
in., Okay ## (c) Load Schedule Example # LOAD SCHEDULE (All Loads are to be shown as unfactored) | | DESIGNATION | LOAE | DING (2) | W١ | WIND | ADD-LOAD(6) | BEND-C | HECK ⁽⁷⁾ | | |------|-----------------|------------|------------------------|-------|--------------------|-------------|--------|---------------------|--------------------------| | ₹ | (1) | $DL^{(3)}$ | LL ⁽⁴⁾ | DOWN | NET ⁽⁵⁾ | TL/LL | D | D | REMARKS | | MARK | (TL/LL) | | or L _r /S/R | WARD | UPLIFT | (kips) | TC | BC | | | | Joists: (plf) | (plf) | (plf) | (plf) | (plf) | | (kips) | (kips) | | | | Girders: (kips) | | | | | | | | | | J1 | 18KSP | 120 | 185 | | 180 | 1.0/0.6 | | 0.3 | Axial Loads | | J2 | 24K7SP | 85 | 155 | | | | | | Wind Moments | | J3 | 28LHSP | 110 | 355 | 95 | 175 | 0.5 | | | Drift Loads, see diagram | | | | | | | | | | | | | G1 | 36G5N6.5K/3.5K | | | | 360 | | | | End Moments | - (1) Joist designation loads include all uniform gravity loads. Provide both Total and Live loads. - (2) Loading values are not required if designation loading values are correct for deflection and load combinations. - (3) When standard SJI designations are used, the design Dead Load is required for load combinations with Wind or Seismic. - (4) The Floor or Roof Live load, Snow, or Rain load. - (5) When Net Uplift is specified for simple loading, it shall already take into account possible reduced Dead Loading present in order to create the largest Net uplift load combination. For more complex loading or when the Dead Load varies greatly for use in load combinations below, *Gross* uplift should be specified with the minimum and maximum Dead Loading values clearly defined. If the uplift cannot be assigned in pounds per lineal foot, a diagram can be shown for joist loading using pounds per square foot. - (6) A concentrated load applied at any panel point on both the top chord and bottom chord. - (7) Chord members shall be designed for additional bending stresses created by this concentrated Total load. | | | | | AXIAL | | END MOMENTS | | | | | | | | | |----------|---|---------------------------|----------------|-------------------|----------------|-------------|----------------|------|-------|-------|----------|---------|-------|---------------------| | Z | DESIGNATION ⁽¹⁾
(TL/LL) | MIN. | w | E | E _m | | LOAD
INUITY | | LATER | AL MO | MENTS | (k-ft.) | | TRANSFER
DETAILS | | MARK | Joists: (plf)
Girders: (kips) | l
(in.* ⁴) | WIND
(kips) | SEISMIC
(kips) | | МОМ | ENTS
ft.) | wv | VIND | I | = | E | m | @
GRIDS | | | , | | , , , | , | , | LEFT | RIGHT | LEFT | RIGHT | LEFT | RIGHT | LEFT | RIGHT | | | J1 | 18KSP | | W=18.0 | E=21.8 | | | | | | | | | | 9/\$8 @ 4 | | J2 | 24K7SP | | | | | 40 | 40 | 35 | 35 | | | | | | | G1 | 36G5N6.5K/3.5K | 985 | | | | 75 | 95 | 55 | 60 | | | | | 11/S8 @ B,C | When lateral moments are specified, continuity moments **shall** also be specified. A Load Schedule which shows a complete breakdown of all loads by Load Category may be required. When special loads as shown in the tables above are specified, the load combinations to be used for joist and Joist Girder design **shall** be provided. Two examples showing how to list load combinations are **shown** below: | ASD example- Basic Load Combinations | LRFD example - Basic Load Combinations | |---|--| | 1. D | 1. 1.4D | | 2. D+L | 2. 1.2D + 1.6L + 0.5(L _r or S or R) | | 3. D + (L_r or S or R) | 3. 1.2D + 1.6(L _r or S or R) + (1.0L or 0.8W) | | 4. D + 0.75L + 0.75(L_r or S or R) | 4. 1.2D + 1.6W + 1.0L + 0.5(L _r or S or R) | | 5. D + (W or 0.7E) | 5. 1.2D + 1.0E + 1.0L + 0.2S | | 6. D + 0.75(W or 0.7E) + 0.75L + 0.75(L_r or S or R) | 6. 0.9D + 1.6W | | 7. 0.6D + W | 7. 0.9D + 1.0E | | 8. 0.6D + 0.7E | | | | | | Special Seismic Load Combinations | Special Seismic Load Combinations | | 9. $D + 0.7E_m$ | 8. $1.2D + 1.0L + E_{m}$ | | 10. D + $0.525E_m$ + $0.75L$ + $0.75(L_r$ or S or R) | 9. 0.9D + E _m | | 11. 0.6D + 0.7E _m | | ### 2.4 SLOPED END BEARINGS Where steel joists or Joist Girders are sloped, beveled ends or sloped end bearings may be provided where the slope exceeds 1/4 inch in 12 inches (1:48). When sloped end bearings are required, the seat depths shall be adjusted to maintain the standard height at the shallow end of the sloped bearing. For Open Web Steel Joists, **K**-Series, bearing ends shall be permitted to not be beveled for slopes of 1/4 inch or less in 12 inches (1:48). #### 2.5 JOIST AND JOIST GIRDER EXTENSIONS Steel joist and Joist Girder extensions shall be in accordance with the requirements of the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. The magnitude and location of the loads to be supported, deflection requirements, and proper bracing of joist or Joist Girder Top Chord Extensions (S Type), Extended Ends (R Type) or full depth cantilever ends shall be clearly indicated on the structural drawings. #### 2.6 CEILING EXTENSIONS Ceiling extensions shall be furnished to support ceilings which are to be attached to the bottom of the joists. They are not furnished for the support of suspended ceilings. The ceiling extension shall be either an extended bottom chord element or a loose unit, whichever is standard with the manufacturer, and shall be of sufficient strength to properly support the ceiling. #### 2.7 BRIDGING AND BRIDGING ANCHORS - (a) Bridging standard with the manufacturer and complying with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption shall be used for bridging all joists furnished by the manufacturer. Positive anchorage shall be provided at the ends of each bridging row at both top and bottom chords. - (b) For K- and LH-Series joists horizontal bridging is recommended for spans up to and including 60 feet (18288 mm) except where the Steel Joist Institute Standard Specifications Load Tables & Weight Tables require bolted diagonal bridging for erection stability. - LH- and DLH-Series joists exceeding 60 feet (18288 mm) in length shall have bolted diagonal bridging for all rows. Refer to Section 6 in the **K-**Series Standard Specification and Section 105 in the **LH/DLH**-Series Standard Specification for erection stability requirements. Refer to Appendix B for OSHA steel joist erection stability requirements. Horizontal bridging shall consist of continuous horizontal steel members designed per the applicable **K**-Series Standard Specification Section 5 or Section 104 in the **LH/DLH**-Series Standard Specification. The material sizes shown in Tables 2.7-1a and 2.7-1b meet the criteria. Alternately, or for "load/load" designation joists, Table 2.7-1c provides the maximum horizontal bridging force, P_{br}, for various combinations of joist spacing and bridging angle size. (c) Diagonal cross bridging consisting of angles or other shapes connected to the top and bottom chords of K-, LH-, and DLH-Series joists shall be used when required by the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. Diagonal bridging, when used, shall be designed per the applicable K-Series Standard Specification 5 or Section 104 in the **LH/DLH**-Series Standard Specification. When the bridging members are connected at their point of intersection, the material sizes listed in Table 2.7-2 and Table 2.7-3 shall meet the above specifications. For **LH/DLH**-Series joists, where the joist spacing is less than 70 percent of the joist depth, bolted horizontal bridging shall be provided in addition to the diagonal bridging, as shown in Table 2.7-3. - (d) When bolted diagonal erection bridging is required, the following shall apply: - 1. The bridging shall be indicated on the joist placement plan. - 2. The joist placement plan shall be the exclusive indicator for the proper placement of this bridging. - 3. Shop installed bridging clips, or functional equivalents, shall be provided where the bridging bolts to the steel joist. - 4. When two pieces of bridging are attached to the steel joist by a common bolt, the nut that secures the first piece of bridging shall not be removed from the bolt for the attachment of the second piece. - 5. Bridging attachments shall not protrude above the top chord of the steel joists. - See Table 2.7-4 for bolt sizes that meet the connection requirements of the K-Series Standard Specification Section 5 and the LH/DLH-Series Standard Specification Section 104. **TABLE 2.7-1a** | | K-SERIES JOISTS MAXIMUM JOIST SPACING FOR HORIZONTAL BRIDGING | | | | | | | | | | | |-----------------|---|-------------|--------------------------|--------------|--------------|-------------|--------------|--|--|--|--| | | | | BRIDGING MATERIAL SIZE** | | | | | | | | | | | | | | Equal Le | eg Angles | | | | | | | | JOIST | Bridging | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | 2-1/2 x 5/32 | | | | | | SECTION | Force | (25 x 3 mm) | (32 x 3 mm) | (38 x 3 mm) | (45 x 3 mm) | (52 x 3 mm) | (64 x 4 mm) | | | | | | NUMBER* | P_{br} | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r = 0.50" | | | | | | | | (5.08 mm) | (6.35 mm) | (7.62 mm) | (8.89 mm) | (10.16 mm) | (12.70 mm) | | | | | | | lbs (N) | ftin. (mm) | | | | | | 1 to 8, incl. | 340 | 5'- 0" | 6'- 3" | 7'- 6" | 8'- 7" | 10'- 0" | 12'- 6" | | | | | | 1 to 0, 11101. | (1512) | (1524) | (1905) | (2286) | (2616) | (3048) | (3810) | | | | | | 9 to 10, incl. | 450 | 4'- 4" | 6'- 1" | 7'- 6" | 8'- 7" | 10'- 0" | 12'- 6" | | | | | | 9 to 10, mci. | (2002) | (1321) | (1854) | (2286) | (2616) | (3048) | (3810) | | | | | | 11 to 12, incl | 560 | 3'- 11" | 5'- 6" | 7'- 3" | 8'- 7" | 10'- 0" | 12'- 6" | | | | | | 11 to 12, illei | (2491) | (1194) | (1676) | (2210) | (2616) | (3048) |
(3810) | | | | | ^{*}Refer to last digit(s) of Joist Designation **Connection to joist shall resist a nominal unfactored 700 pound force (3114 N) ## **TABLE 2.7-1b** # LH-SERIES JOISTS MAXIMUM JOIST SPACING FOR HORIZONTAL BRIDGING SPANS OVER 60 ft. (18.3 m) REQUIRE BOLTED DIAGONAL BRIDGING | | | BRIDGING MATERIAL SIZE** | | | | | | | |--------------------------|-------------------------------------|---|---|---|---|---|--|--| | | _ | | | | eg Angles | 1 | | | | Joist Section
Number* | Force
P _{br}
Ibs (N) | 1 x 7/64
(25 x 3 mm)
r = 0.20"
(5.08 mm) | 1-1/4 x 7/64
(32 x 3 mm)
r = 0.25"
(6.35 mm) | 1-1/2 x 7/64
(38 x 3 mm)
r = 0.30"
(7.62 mm) | 1-3/4 x 7/64
(45 x 3 mm)
r = 0.35"
(8.89 mm) | 2 x 1/8
(52 x 3 mm)
r = 0.40"
(10.16 mm) | 2-1/2 x 5/32
(64 x 4 mm)
r = 0.50"
(12.70 mm) | | | | | ftin. (mm) | | | 02 to 03, incl. | 400
(1779) | 4'-7" (1397) | 6'-3" (1905) | 7'–6" (2286) | 8'-9" (2667) | 10'-0" (3048) | 12'–6" (3810) | | | 04 to 05, incl. | 550
(2447) | 3'-11"(1194) | 5'-6" (1676) | 7'–4" (2235) | 8'-9" (2667) | 10'-0" (3048) | 12'–6" (3810) | | | 06 to 08, incl. | 750
(3336) | | 4'-9" (1448) | 6'-3" (1905) | 7'–11" (2413) | 10'-0" (3048) | 12'-6" (3810) | | | 09 | 850
(3781) | | 4'-5" (1346) | 5'–10" (1778) | 7'-5" (2261) | 9'-9" (2972) | 12'–6" (3810) | | | 10 | 900
(4003) | | 4'-4" (1321) | 5'-8" (1727) | 7'–3" (2210) | 9'–5" (2870) | 12'-6" (3810) | | | 11 | 950
(4226) | | 4'–2" (1270) | 5'-7" (1702) | 7'–0" (2134) | 9'–2" (2794) | 12'–6" (3810) | | | 12 | 1100
(4893) | | 3'-11" (1194) | 5'–2" (1575) | 6'–8" (2032) | 8'-6" (2591) | 12'-6" (3810) | | | 13 | 1200
(5338) | | 3'-9" (1143) | 4'-11" (1499) | 6'-3" (1905) | 8'-2" (2489) | 12-6" (3810) | | | 14 | 1300
(5783) | | | 4'-9" (1448) | 6'-0" (1829) | 7'-10" (2388) | 12'-4" (3759) | | | 15 | 1450
(6450) | | | 4'-6" (1372) | 5'-8" (1727) | 7'-5" (2261) | 11'-8" (3556) | | | 16 to 17, incl. | 1850
(8229) | | | 4'-0" (1219) | 5'-0" (1524) | 6'-7"(2007) | 10'-4" (3150) | | | 18 to 20, incl. | 2000
(8896) | | | 3'-10" (1168) | 4'-10" (1473) | 6'-4" (1930) | 9'-11" (3023) | | | 21 to 22, incl. | 2500
(11120) | | | | 4'-4" (1321) | 5'-8" (1727) | 8'-10" (2692) | | | 23 to 24, incl. | 3100
(13789) | | | | 3'-10" (1168) | 5'-1" (1549) | 7'-11" (2413) | | | 25 | 3500
(15569) | | | | | 4'-9"(1448) | 7'-6" (2286) | | ^{*} Refer to last two digit(s) of Joist Designation ^{**} Connection to joist shall resist force listed in Table 104.5-1 **TABLE 2.7-1c** | MAXIMUM BRIDGING FORCE (Pbr) FOR HORIZONTAL BRIDGING (lbs) | | | | | | | | | | | | |--|-----------|---------------------------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|--| | JOIST | | BRIDGING ANGLE SIZE (EQUAL LEG ANGLE) | | | | | | | | | | | SPACING | 1 x 7/64 | 1¼ x 7/64 | 1½ x7/64 | 1¾ x 7/64 | 2 x 1/8 | 2½ x 5/32 | 3 x 3/16 | | | | | | (ftin.) | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r = 0.50" | r = 0.60" | | | | | | 2'-0" | 2150 | 3960 | 5600 | | | | | | | | | | 2'-6" | 1370 | 2730 | 4410 | 5910 | | | | | | | | | 3'-0" | 950 | 1890 | 3290 | 4850 | | | | | | | | | 3'-6" | 700 | 1390 | 2420 | 3840 | 6180 | | | | | | | | 4'-0" | 530 | 1060 | 1850 | 2960 | 5030 | | | | | | | | 4'-6" | 420 | 840 | 1460 | 2340 | 4000 | | | | | | | | 5'-0" | 340 | 680 | 1180 | 1890 | 3240 | | | | | | | | 5'-6" | - | 560 | 980 | 1560 | 2670 | | | | | | | | 6'-0" | - | 470 | 820 | 1310 | 2250 | 5490 | | | | | | | 6'-6" | - | - | 700 | 1120 | 1910 | 4680 | | | | | | | 7'-0" | - | - | 600 | 960 | 1650 | 4030 | | | | | | | 7'-6" | - | - | 520 | 840 | 1440 | 3510 | | | | | | | 8'-0" | - | - | - | 740 | 1260 | 3090 | | | | | | | 8'-6" | - | - | - | 650 | 1120 | 2740 | 5680 | | | | | | 9'-0" | - | - | - | - | 1000 | 2440 | 5060 | | | | | | 9'-6" | - | - | - • | - | 890 | 2190 | 4540 | | | | | | 10'-0" | - | - | - | | 810 | 1970 | 4100 | | | | | | 10'-6" | - | - | - | - | - | 1790 | 3720 | | | | | | 11'-0" | - | - | - | - | - | 1630 | 3390 | | | | | | 11'-6" | - | - | - | - | - | 1490 | 3100 | | | | | | 12'-0" | - | - | - | - | - | 1370 | 2850 | | | | | **TABLE 2.7-2** # K, LH, and DLH SERIES JOISTS MAXIMUM JOIST SPACING FOR DIAGONAL BRIDGING | | MIAXIMUM JOIST SPACING FOR DIAGONAL BRIDGING | | | | | | | | | | |-------------|--|--------------|--------------|----------------|---------------|-----------------------------|---------------|---------------|--|--| | | | | BRIDGI | NG ANGLE S | IZE – (EQUAL | LEG ANGLE) | | | | | | | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | 2 ½ x 5/32 | 3 x 3/16 | 3 ½ x 1/4 | | | | JOIST | (25 x 3 mm) | (32 x 3 mm) | (38 x 3 mm) | (45 x 3 mm) | (50 x 3 mm) | (64x 4 mm) | (76 x 5 mm) | (89 x 6 mm) | | | | DEPTH | r = 0.20" | r = 0.25" | r = 0.30" | r = 0.35" | r = 0.40" | r=0.50" | r = 0.60" | r = 0.70" | | | | | (5.08 mm) | (6.35 mm) | (7.62 mm) | (8.89 mm) | (10.16 mm) | (12.70 mm) | (15.24 mm) | (17.78 mm) | | | | in. (mm) | ftin. | | | 12" (305) | 6'-7" (2007) | 8'-3" (2514) | , , | 11'-7" (3530) | 13'-3"(4038) | 16'-7"(5055) | 19'-11"(6070) | 23'-3"(7086) | | | | 14" (356) | 6'-6" (1981) | 8'-3" (2514) | , , | 11'-7" (3530) | 13'-3"(4038) | 16'-7"(5055) | 19'-11"(6070) | 23'-3"(7086) | | | | 16" (406) | 6'-6" (1981) | 8'-2" (2489) | 9'-10"(2997) | 11'-7" (3530) | 13'-3"(4038) | 16'-7"(50 <mark>55</mark>) | 19'-11"(6070) | 23'-3"(7086) | | | | 18" (457) | 6'-6" (1981) | 8'-2" (2489) | 9'-10"(2997) | 11'-6" (3505) | 13'-3"(4038) | 16'-7"(5055) | 19'-11"(6070) | 23'-3"(7086) | | | | 20" (508) | 6'-5" (1955) | 8'-2" (2489) | 9'-10"(2997) | 11'-6" (3505) | 13'-2"(4013) | 16'-7"(5055) | 19'-11"(6070) | 23'-3"(7086) | | | | 22" (559) | 6'-4" (1930) | 8'-1" (2463) | 9'-10"(2997) | 11'-6" (3505) | 13'-2"(4013) | 16'-6"(5029) | 19'-11"(6070) | 23'-3"(7086) | | | | 24" (610) | 6'-4" (1930) | 8'-1" (2463) | 9'-9" (2971) | 11'-5" (3479) | 13'-2"(4013) | 16'-6"(5029) | 19'-10"(6045) | 23'-3"(7086) | | | | 26" (660) | 6'-3" (1905) | 8'-0" (2438) | 9'-9" (2971) | 11'-5" (3479) | 13'-1"(3987) | 16'-6"(5029) | 19'-10"(6045) | 23'-2"(7061) | | | | 28" (711) | 6'-3" (1905) | 8'-0" (2438) | 9'-8" (2946) | 11'-5" (3479) | 13'-1"(3987) | 16'-6"(5029) | 19'-10"(6045) | 23'-2"(7061) | | | | 30" (762) | 6'-2" (1879) | 7'-11 (2413) | 9'-8" (2946) | 11'-4" (3454) | 13'-1"(3987) | 16'-5"(5004) | 19'-10"(6045) | 23'-2"(7061) | | | | 32" (813) | 6'-1" (1854) | 7'-10"(2387) | 9'-7" (2921) | 11'-4" (3454) | 13'-0" (3962) | 16'-5"(5004) | 19'-9"(6020) | 23'-2"(7061) | | | | 36" (914) | 5'-11"(1803) | 7'-9" (2362) | 9'-6" (2895) | 11'-3" (3429) | 12'-11"(3973) | 16'-4"(4979) | 19'-9"(6020) | 23'-1"(7035) | | | | 40" (1016) | 5'-9"(1753) | 7'-7" (2311) | 9'-5" (2870) | 11'-2" (3403) | 12'-10"(3911) | 16'-4"(4979) | 19'-8"(5994) | 23'-1"(7035) | | | | 44" (1118) | 5'-6"(1676) | 7'-5" (2260) | 9'-3" (2819) | 11'-0" (3352) | 12'-9" (3886) | 16'-3"(4953) | 19'-7"(5969) | 23'-0"(7010) | | | | 48" (1219) | 5'-4"(1626) | 7'-3" (2209) | 9'-2" (2794) | 10'-11"(3327) | 12'-8" (3860) | 16'-2"(4928) | 19'-7"(5969) | 22'-11"(6985) | | | | 52" (1321) | 5'-0"(1524) | 7'-1"(2159) | 9'-0" (2743) | 10'-10" (3302) | 12'-7" (3835) | 16'-1"(4902) | 19'-6"(5943) | 22'-11"(6985) | | | | 56" (1422) | 4'-9"(1448) | 6'-10"(2083) | 8'-10"(2692) | 10'-8" (3251) | 12'-5" (3784) | 16'-0"(4877) | 19'-5"(5918) | 22'-10"(6960) | | | | 60" (1524) | 4'-4"(1321) | 6'-8"(2032) | 8'-7" (2616) | 10'-6" (3200) | 12'-4" (3759) | 15'-10"(4826) | 19'-4"(5893) | 22'-9"(6935) | | | | 64" (1626) | ** | 6'-4"(1931) | 8 -5" (2565) | 10'-4" (3149) | 12'-2" (3708) | 15'-9" (4801) | 19'-3"(5867) | 22'-8"(6909) | | | | 68" (1727) | ** | 6'-1"(1854) | 8'-2" (2489) | 10'-2" (3098) | 12'-0" (3657) | 15'-8" (4775) | 19'-2"(5842) | 22'-7"(6884) | | | | 72" (1829) | ** | 5'-9"(1753) | 8'-0" (2438) | 10'-0" (3048) | 11'-10"(3606) | 15'-6" (4724) | 19'-1" (5816) | 22'-6" (6858) | | | | 80" (2032) | ** | 5'-0"(1524) | 7'-5"(2260) | 9'-6" (2895) | 11'-6" (3505) | 15'-3" (4648) | 18'-10"(5740) | 22'-4" (6807) | | | | 88" (2235) | | ** | 6'-9"(2058) | 9'-0" (2743) | 11'-1" (3378) | 14'-11"(4546) | 18'-7" (5664) | 22'-1" (6731) | | | | 96" (2438) | | ** | 6'-0"(1829) | 8'-5" (2565) | 10'-8"(3251) | 14'-7" (4445) | 18'-4" (5588) | 21'-11"(6680) | | | | 104" (2642) | | | ** | 7'-9" (2362) | 10'-1"(3073) | 14'-2" (4318) | 18'-0" (5486) | 21'-8" (6604) | | | | 112" (2845) | | | ** | 7'-0" (2134) | 9'-6"(2895) | 13'-9" (4191) | 17'-8" (5385) | 21'-4" (6503) | | | | 120" (3048) | | | | ** | 8'-9"(2667) | 13'-4"(4064) | 17'-3" (5258) | 21'-1" (6426) | | | | ` ' | l | | 1 | | ` ′ | ` ' | · | ` ′ | | | **INTERPOLATION BELOW THE MINIMUM VALUES SHOWN IS NOT ALLOWED. SEE TABLE 2.7-3 FOR MINIMUM JOIST SPACE FOR DIAGONAL ONLY BRIDGING. **TABLE 2.7-3** | LH AND DLH SERIES JOISTS HORIZONTAL PLUS DIAGONAL BRIDGING REQUIREMENTS | | | | | | | | | |---|--|---|--|--|--|--|--|--| | JOIST
DEPTH | MINIMUM JOIST SPACE FOR DIAGONAL ONLY BRIDGING (0.70 x DEPTH)* | HORIZONTAL AND DIAGONAL
MINIMUM ANGLE SIZE REQUIRED
FOR JOIST SPACING < (0.70 X DEPTH)
ANDJOIST SPANS > 60'-0" | | | | | | | | in. | ft in. | in. | | | | | | | | 52" | 3'- 0" | 1" x 1" x 7/64" | | | | | | | | 56" | 3'- 3" | 1" x 1" x 7/6 <mark>4"</mark> | | | | | | | | 60" | 3'- 6" | 1" x 1" x 7/64" | | | | | | | | 64" | 3'-
8" | 11/4" x 11/4" x 7/64" | | | | | | | | 68" | 3'-11" | 1¼" x 1¼" x 7/64" | | | | | | | | 72" | 4'- 2" | 1½" x 1½" x 7/64" | | | | | | | | 80" | 4'- 8" | 11/4" x 11/4" x 7/64" | | | | | | | | 88" | 5'- 1" | 1 ½" x 1 ½" x 7/64" | | | | | | | | 96" | 5'- 7" | 1 ½" x 1 ½" x 7/64" | | | | | | | | 104" | 6'- 0" | 1 ³ ⁄ ₄ " x 1 ³ ⁄ ₄ " x 7/64" | | | | | | | | 112" | 6'- 6" | 1 ³ / ₄ " x 1 ³ / ₄ " x 7/64" | | | | | | | | 120" | 7'- 0" | 2" x 2" x1/8" | | | | | | | *NOTE: WHEN THE JOIST SPACING IS LESS THAN 0.70 x JOIST DEPTH, BOLTED HORIZONTAL BRIDGING SHALL BE USED IN ADDITION TO DIAGONAL BRIDGING. **TABLE 2.7-4** | BOLT SIZES | WHICH MEET BOLTED BRIDGIN | G CONNECTION REQUIREMENTS | |--------------|---------------------------|---------------------------| | JOIST SERIES | SECTION NUMBER* | BOLT DIAMETER | | K | ALL | 3/8" A307 | | LH/DLH | 2 – 12 | 3/8" A307 | | LH/DLH | 13 – 17 | 1/2" A307 | | DLH | 18 – 20 | 5/8" A307 | | DLH | 21 – 22 | 5/8" A325 | | DLH | 23 – 25 | 3/4" A325 | *REFER TO LAST DIGIT(S) OF JOIST DESIGNATION NOTE: WASHERS SHALL BE USED WITH SLOTTED OR OVERSIZED HOLES. BOLTS SHALL BE TIGHTENED TO A MINIMUM SNUG TIGHT CONDITION. #### 2.8 HEADERS Headers for Open Web Steel Joists, **K**-Series as outlined and defined in Section 5.2(a) shall be furnished by the seller. Such headers shall be any type standard with the manufacturer. Conditions involving headers shall be investigated and, if necessary, provisions made to provide a safe condition. Headers are not provided for Longspan Steel Joists, **LH-Series**, and Deep Longspan Steel Joists, **DLH-**Series. #### 2.9 BOTTOM CHORD LATERAL BRACING FOR JOIST GIRDERS Bottom chord lateral bracing shall be permitted to be furnished to prevent lateral movement of the bottom chord of the Joist Girder and to prevent the ratio of chord length to chord radius of gyration from exceeding that specified in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. The lateral bracing shall be that which is standard with the manufacturer, and shall be sufficient to properly brace the bottom chord of the Joist Girder. | SECTION 3 | | |-----------|--| | MATERIALS | | #### 3.1 STEEL The steel used in the manufacture of joists and Joist Girders shall comply with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. #### **3.2 PAINT** - (a) Standard Shop Paint The shop coat of paint, when specified, shall comply with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. - (b) Disclaimer The typical shop applied paint that is used to coat steel joists and Joist Girders is a dip applied, air dried paint. The paint is intended to be an impermanent and provisional coating which shall protect the steel for only a short period of exposure in ordinary atmospheric conditions. Since most steel joists and Joist Girders are painted using a standard dip coating, the coating shall be permitted to not be uniform and shall be permitted to include drips, runs, and sags. Compatibility of any coating including fire protective coatings applied over the standard shop paint shall be the responsibility of the specifier and/or painting contractor. The shop applied paint may require field touch-up/repair as a result of, but not limited to, the following: - Abrasions from: Bundling, banding, loading and unloading, chains, dunnage during shipping, cables and chains during erection, bridging, installation, and other handling at the jobsite. NOTE: Rusting should be expected at any abrasion. - 2. Dirt. - 3. Diesel smoke. - 4. Road salt. - 5. Weather conditions during storage. The joist manufacturer shall not be responsible for the condition of the paint if it is not properly protected after delivery. **SECTION 4** ## INSPECTION Inspections shall be made in accordance with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables Section 5.12 for **K**-Series, Section 104.13 for **LH-** and **DLH-**Series, and Section 1004.10 for Joist Girders. **SECTION 5** # **ESTIMATING** #### 5.1 PLANS FOR BIDDING Plans to serve as the basis for bids shall show the character of the work with sufficient clarity to permit making an accurate estimate and shall show the following: Designation and location of materials [see Section 5.2(a)], including any special design or configuration requirements. Locations and elevations of all steel and concrete supporting members and bearing walls. Location and length of joist extended ends. Location and size of all openings in floors and roofs. Location of all partitions. Loads and their locations as defined in Section 6.1. Construction and thickness of floor slabs, roof deck, ceilings and partitions. Joists or Joist Girders requiring extended bottom chords. Paint, if other than manufacturer's standard. #### **5.2 SCOPE OF ESTIMATE** (a) Unless otherwise specified, the following items shall be included in the estimate, and requirements shall be determined as outlined in Section 6.1. Steel Joists. Joist Girders. Joist Substitutes. Joist Extended Ends. Ceiling Extensions. Extended bottom chord used as strut. Bridging and bridging anchors. Joist Girder bottom chord bracing. Headers which are defined as members supported by and carrying Open Web Steel Joists, **K**-Series. One shop coat of paint, when specified, shall be in accordance with Section 3.2. (b) The following items shall not be included in the estimate but shall be permitted to be quoted and identified by the joist manufacturer as separate items: Headers for Longspan Steel Joists, LH-Series. Headers for Deep Longspan Steel Joists, **DLH**-Series. Reinforcement in slabs over joists. Centering material, decking, and attachments. Miscellaneous framing between joists for openings at ducts, dumbwaiters, ventilators, skylights, etc. Loose individual or continuous bearing plates and bolts or anchors for such plates. Erection bolts for joist and Joist Girder end anchorage. Horizontal bracing in the plane of the top and bottom chords from joist to joist or joist to structural framing and walls. Wood nailers. Moment plates. Special joist configuration or bridging layouts for ductwork or sprinkler systems. Shear Studs. #### **SECTION 6** # PLANS AND SPECIFICATIONS #### **6.1 PLANS FURNISHED BY BUYER** The buyer shall furnish the seller plans and specifications as prepared by the **specifying professional** showing all material requirements and steel joist and/or steel Joist Girder designations, the layout of walls, columns, beams, girders and other supports, as well as floor and roof openings and partitions correctly dimensioned. The elevation of finished floors, roofs, and bearings shall be shown with due consideration taken for the effects of dead load deflections. #### (a) Loads The **specifying professional** shall clearly provide all design loads as described in Section 2.3 This includes the live loads to be used, the wind uplift if any, the weights of partitions and the location and amount of any special loads, such as monorails, fans, blowers, tanks, etc. #### (b) Connections Minimum End Anchorage for simple span gravity loading shall be in accordance with Steel Joist Institute Standard Specifications; Section 5.6 for K-Series, Section 104.4 for LH- and DLH-Series, and Section 1004.6 for Joist Girders. The end anchorage of a steel joist or Joist Girder is the connection of the joist or Joist Girder bearing seat to the support of the joist or Joist Girder. The adequacy of the end anchorage connection (bolted or welded) between the joist or Joist Girder bearing seat and the supporting structure is the responsibility of the **specifying professional**. The contract documents shall clearly illustrate the end anchorage connection. When the end anchorage is welded, it is recommended that the **specifying professional** consider a smaller fillet weld thickness in conjunction with a longer weld length. The **specifying professional** is responsible for bridging termination connections. The contract documents shall clearly illustrate these termination connections. The joist manufacturer is responsible for the design of the bearing seats of joists or Joist Girders for the loads designated by the **specifying professional** in the contract documents. #### (c) Special Considerations The specifying professional shall indicate on the construction documents special considerations including: - a) Profiles for non-standard joist and Joist Girder configurations (Standard joist and Joist Girder configurations are as indicated in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption). - b) Oversized or other non-standard web openings - c) Extended Ends - d) Deflection criteria for live and total loads for non-SJI standard joists - e) Non-SJI standard bridging #### **6.2 PLANS FURNISHED BY SELLER** The seller shall furnish the buyer with steel joist placement plans to show the material as specified on the construction documents and are to be utilized for field installation in accordance with specific project requirements as stated in Section 6.1. Steel placement plans shall include, at a minimum, the following: - 1. Listing of all applicable loads as stated in Section 6.1 and used in the design of the steel joists and Joist Girders as specified in the construction documents. - 2. Profiles for non-standard joist and Joist Girder configurations (standard joist and Joist Girder configurations are as indicated in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption). - 3. Connection requirements for: - a) Joist supports - b) Joist Girder supports - c) Field splices - d) Bridging attachments - 4. Deflection criteria for live load and total loads for non-SJI standard joists. - 5. Size, location, and connections for all bridging - 6. Joist headers All material shall be identified with its mark which also appears on the bill
of material. The shop paint shall be as noted on the joist placement plans. Steel joist placement plans do not require the seal and signature of the joist manufacturer's registered design professional. ## 6.3 DISCREPANCIES The **specifying professional's** bid plans and specifications shall be assumed to be correct in the absence of written notice from the buyer to the contrary. When plans are furnished by the buyer which do not agree with the Architect's bid plans, such detailed plans shall be considered as a written notice of change of plans. However, it shall be the buyer's responsibility to advise the seller of those changes which affect the joists or Joist Girders. #### **6.4 APPROVAL** When joist placement plans are furnished by the seller, prints thereof are submitted to the buyer and owner for examination and approval. The seller allows a maximum of fourteen (14) calendar days in their schedule for the return of placement plans noted with the owner's and customer's approval, or approval subject to corrections as noted. The seller makes the corrections, furnishes corrected prints for field use to the owner/customer and is released by the owner/customer to start joist manufacture. Approval by the owner/customer of the placement plans, sections, notes and joist schedule prepared by the seller indicates that the seller has correctly interpreted the contract requirements, and is released by the owner/customer to start joist manufacture. This approval constitutes the owner's/customer's acceptance of all responsibility for the design adequacy of any detail configuration of joist support conditions shown by the seller as part of the preparation of these placement plans. Approval does not relieve the seller of the responsibility for accuracy of detail dimensions on the plans, nor the general fit-up of joists to be placed in the field. #### **6.5 CHANGES** When any changes in plans are made by the buyer (or the buyer's representative) either prior to or after approval of detailed plans, or when any material is required and was not shown on the plans used as the basis of the bid, the cost of such changes and/or extra material shall be paid by the buyer at a price to be agreed upon between buyer and seller. #### **6.6 CALCULATIONS** The seller shall design the steel joists and/or steel Joist Girders in accordance with the current Steel Joist Institute Standard Specifications Load Tables & Weight Tables to support the load requirements of Section 6.1. The **specifying professional** may require submission of the steel joist and Joist Girder calculations as prepared by a registered design professional responsible for the product design. If requested by the **specifying professional**, the steel joist manufacturer shall submit design calculations with a cover letter bearing the **seal** and **signature** of the joist manufacturer's registered design professional. In addition to standard calculations under this seal and **signature**, submittal of the following shall be included: - 1. Non-SJI standard bridging details (e.g. for cantilevered conditions, net uplift, etc.) - 2. Connection details for: - a) Non-SJI standard connections (e.g. flush framed or framed connections) - b) Field splices - c) Joist headers ## SECTION 7 # **HANDLING AND ERECTION*** The buyer and/or erector shall check all materials on arrival at job site and promptly report to seller any discrepancies and/or damages. The buyer and/or erector shall comply with the requirements of the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption in the handling and erection of material. To comply with these requirements, the Steel Joist Institute's Technical Digest 9, "Handling and Erection of Steel Joists and Joist Girders," shall also be followed. When joists cannot be delivered as a single piece, they shall be permitted to be delivered in several pieces therefore requiring the pieces to be spliced together in the field. The manufacturer's instructions SHALL be followed to ensure matching pieces are joined, proper bolts are used, and any required bolt tensioning is incorporated. All joists shall be handled by methods which avoid damage to any part of the joist. For long LH-Series joists, DLH-Series joists, or Joist Girders this may require the use of spreader bars, multiple hoisting cables, or multiple cranes as necessary to safely handle the joist. Hoisting cables shall be attached at panel points and shall be at panel point locations selected to minimize erection stresses. The current OSHA SAFETY STANDARDS FOR STEEL ERECTION, 29 CFR PART 1926, SUBPART R- STEEL ERECTION, refers to certain joists at or near columns to be designed with sufficient strength to allow one employee to release the hoisting cable without the need for erection bridging. This STANDARD shall not be interpreted that any joist at or near a column line is safe to support an employee without bridging installed. Many limitations exist that prevent these joists from being designed to safely allow an employee on an un-bridged joist. Because of these limitations these joists shall be erected by incorporating erection methods ensuring joist stability and either: - Installing bridging or otherwise stabilizing the joist prior to releasing the hoisting cable, or - 2) Releasing the hoisting cable without having a worker on the joist. A steel joist or Joist Girder shall not be placed on any support structure unless such structure is stabilized. When steel joists or Joist Girders are landed on a structure, they shall be secured to prevent unintentional displacement prior to installation. A bridging terminus point shall be established before joist bridging is installed. Steel joist and Joist Girders shall not be used as anchorage points for a fall arrest system unless written directions to do so is obtained from a "qualified person" (1). The buyer and/or erector shall check all materials on arrival at job site and promptly report to seller any discrepancies and/or damages. The buyer and/or erector shall comply with the requirements of the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption in the handling and erection of material. No modification that affects the strength of a steel joist or Joist Girder shall be made without the written approval of the project engineer of record. The seller shall not be responsible for the condition of paint finish on material if it is not properly protected after delivery. The seller shall not be responsible for improper fit of material due to inaccurate construction work. *For thorough cover<mark>age</mark> of this topic, refer to SJI Technical Digest 9, "Handling and Erection of Steel Joists and Joist Girders." ¹⁾ See Federal Register, Department of Labor, Occupational Safety and Health Administration (2001), 29 CFR Part 1926 Safety Standards for Steel Erection; Final Rule, §1926.757 Open Web Steel Joists - January 18, 2001, Washington, D.C. for definition of "qualified person". ## **SECTION 8** # **BUSINESS RELATIONS** #### **8.1 PRESENTATION OF PROPOSALS** All proposals for furnishing material shall be made on a Sales Contract Form. After acceptance by the buyer, these proposals shall be approved or executed by a qualified official of the seller. Upon such approval the proposal becomes a contract. #### **8.2 ACCEPTANCE OF PROPOSALS** All proposals are intended for prompt acceptance and are subject to change without notice. #### 8.3 BILLING Contracts on a lump sum basis are to be billed proportionately as shipments are made. #### **8.4 PAYMENT** Payments shall be made in full on each invoice without retention. #### **8.5 ARBITRATION** All business controversies which cannot be settled by direct negotiations between buyer and seller shall be submitted to arbitration. Both parties shall sign a submission to arbitration and if possible agree upon an arbitrator. If they are unable to agree, each shall appoint an arbitrator and these two shall appoint a third arbitrator. The expenses of the arbitration shall be divided equally between the parties, unless otherwise provided for in the agreements to submit to arbitration. The arbitrators shall pass final judgment upon all questions; both of law and fact, and their findings shall be conclusive. # **GLOSSARY** Accessories. Structural components related to the design, fabrication and erection of *joists* and *Joist Girders* including, but not limited to sloped *end bearings*, *extended ends*, *ceiling extensions*, *bridging* and bridging anchors, *headers* and bottom chord lateral bracing for *Joist Girders*. ASD (Allowable Strength Design). Method of proportioning structural components such that the *allowable strength* equals or exceeds the *required strength* of the component under the action of the *ASD load combinations*. ASD Load Combination. *Load* combination in the *applicable building code* intended for *allowable strength design* (allowable stress design). Allowable Strength*. *Nominal strength* divided by the *safety factor*, R_n/Ω . Applicable Building Code. Building code under which the structure is designed. Available Strength*. Design strength or allowable strength as appropriate. Bay. The distance between the main structural frames or walls of a building. Bearing. The distance that the bearing shoe or seat of a *joist* or *Joist* Girder extends over its masonry, concrete or steel support. Bearing Plate. The steel plate used for a *joist* or *Joist Girder* to bear on when it is supported by masonry or concrete supports. The plate is designed by the *Specifying Professional* to carry the *joist* reaction to the supporting structure. Bottom Chord Extension (BCX). The two angle extended part of a *joist* bottom chord from the first bottom chord panel point towards the end of the joist. Bridging. In general, a member connected to a joist to brace it from lateral movement. See also Diagonal Bridging and Horizontal Bridging
Buckling. *Limit state* of sudden change in the geometry of a structure or any of its elements under a critical loading condition. Buckling Strength. Nominal strength for buckling or instability limit states. Buyer. The entity that has agreed to purchase *material* from the manufacturer and has also agreed to the terms of sale. Camber. An upward curvature of the chords of a *joist* or *Joist Girder* induced during shop fabrication. Note, this is in addition to the pitch of the top chord. Ceiling Extension. A *bottom chord extension* except that only one angle of the *joist* bottom chord is extended from the first bottom chord panel point towards the end of the joist. Chords. The top and bottom members of a *joist* or *Joist Girder*. When a chord is comprised of two angles there is usually a gap between the members. Clear Span. The actual clear distance or opening between supports for a *joist*, that is the distance between walls or the distance between the edges of flanges of beams. Cold-Formed Steel Structural Member. Shape manufactured by press-braking blanks sheared from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-rolled coils or sheets; both forming operations being performed at ambient room temperature, that is, without manifest addition of heat such as would be required for hot forming. Collateral Load. All additional dead loads other than the weight of the building, such as sprinklers, pipes, ceilings, and mechanical or electrical components. Connection. Combination of structural elements and *joints* used to transmit forces between two or more members. See also Splice. Deck. A floor or roof covering made out of gage metal attached by welding or mechanical means to *joists*, beams, *purlins*, or other structural members and can be galvanized, painted, or unpainted. Design Load. Applied *load* determined in accordance with either *LRFD load combinations* or *ASD load combinations*, whichever is applicable. Design Strength*. Resistance factor multiplied by the nominal strength, ΦR_n. Diagonal Bridging. Two angles or other structural shapes connected from the top chord of one *joist* to the bottom chord of the next joist to form an 'X' shape. These members are almost always connected at their point of intersection. Diaphragm. Roof, floor or other membrane or bracing system that transfers in-plane forces to the lateral force resisting system. Effective Length. Length of an otherwise identical column with the same strength when analyzed with pin-ended boundary conditions. Elastic Analysis. Structural analysis based on the assumption that the structure returns to its original geometry on removal of the load. End Diagonal or Web. The first web member on either end of a *joist* or *Joist Girder* which begins at the top chord at the seat and ends at the first bottom chord panel point. Erector. The entity that is responsible for the safe and proper erection of the *materials* in accordance with all applicable codes and regulations. Extended End. The extended part of a *joist* top chord with the seat angles also being extended from the end of the joist extension back into the joist and maintaining the standard end *bearing* depth over the entire length of the extension. Factored Load. Product of a load factor and the nominal load. Filler. A rod, plate or angle welded between a two angle web member or between a top or bottom chord panel to tie them together, usually located at the middle of the member. Flexural Buckling. Buckling mode in which a compression member deflects laterally without twist or change in cross-sectional shape. Flexural-Torsional Buckling. Buckling mode in which a compression member bends and twists simultaneously without change in cross-sectional shape. Girt. Horizontal structural member that supports wall panels and is primarily subjected to bending under horizontal loads, such as wind load. Gravity Load. Load, such as that produced by dead and live loads, acting in the downward direction. Header. A structural member located between two *joists* or between a joist and a wall which carries another joist or joists. It is usually made up of an angle, channel, or beam with saddle angle connections on each end for bearing. Horizontal Bridging. A continuous angle or other structural shape connected to the top and bottom chord of a joist. Inelastic Analysis. Structural analysis that takes into account inelastic material behavior, including plastic analysis. Instability. *Limit state* reached in the loading of a *structural component*, frame or structure in which a slight disturbance in the *loads* or geometry produces large displacements. Joint. Area where two or more ends, surfaces or edges are attached. Categorized by type of fastener or weld used and the method of force transfer. Joist. A structural load-carrying member with an open web system which supports floors and roofs utilizing hot-rolled or cold-formed steel and is designed as a simple span member. Currently, the SJI has the following joist designations: **K-Series including KCS, LH-**Series and **DLH-**Series, and **CJ-**Series. Joist Girder. A primary structural load-carrying member with an open web system designed as a simple span supporting equally spaced concentrated loads of a floor or roof system acting at the panel points of the member and utilizing hot-rolled or cold-formed steel. Joist Substitute. A structural member who's intended use is for very short spans (10 feet or less) where open web steel joists are impractical. They are usually used for short spans in skewed bays, over corridors or for outriggers. It can be made up of two or four angles to form channel sections or box sections. Lateral Buckling. Buckling mode of a flexural member involving deflection normal to the plane of bending. Lateral-Torsional Buckling. Buckling mode of a flexural member involving deflection normal to the plane of bending occurring simultaneously with twist about the shear center of the cross section. Limit State. Condition in which a structure or component becomes unfit for service and is judged either to be no longer useful for its intended function (*serviceability limit state*) or to have reached its ultimate load-carrying capacity (*strength limit state*). Load. Force or other action that results from the weight of building materials, occupants and their possessions, environmental effects, differential movement, or restrained dimensional changes. Load Effect. Forces, stresses, and deformations produced in a *structural component* by the applied *loads*. Load Factor. Factor that accounts for deviations of the *nominal load* from the actual *load*, for uncertainties in the analysis that transforms the *load* into a *load effect*, and for the probability that more than one extreme *load* will occur simultaneously. Local Buckling**. Limit state of buckling of a compression element within a cross section. LRFD (Load and Resistance Factor Design). Method of proportioning *structural components* such that the *design strength* equals or exceeds the *required strength* of the component under the action of the *LRFD load combinations*. LRFD Load Combination. Load combination in the applicable building code intended for strength design (Load and Resistance Factor Design). Material. Joists, Joist Girders, and accessories as provided by the Seller. Nailers. Strips of lumber attached to the top chord of a *joist* so plywood or other flooring can be nailed directly to the *joist*. Nominal Load. Magnitude of the load specified by the applicable building code. Nominal Strength*. Strength of a structure or component (without the resistance factor or safety factor applied) to resist the *load effects*, as determined in accordance with these *Standard Specifications*. Owner. The entity that is identified as such in the Contract Documents. Permanent Load. Load in which variations over time are rare or of small magnitude. All other loads are variable loads. Placement Plans. Drawings that are prepared depicting the interpretation of the Contract Documents requirements for the *material* to be supplied by the *Seller*. These floor and/or roof plans are approved by the *Specifying Professional*, *Buyer* or *Owner* for conformance with the design requirements. The *Seller* uses the information contained on these drawings for final material design. A unique piece mark number is typically shown for the individual placement of *joists*, *Joist Girders* and *accessories* along with sections that describe the *end bearing* conditions and minimum attachment required so that *material* is placed in the proper location in the field. Ponding. Retention of water at low or irregular areas on a roof due solely to the deflection of flat roof framing. Purlin. Horizontal structural member that supports roof deck and is primarily subjected to bending under vertical loads such as dead, snow or wind loads. Quality Assurance. System of shop and field activities and controls implemented by the *owner* or his/her designated representative to provide confidence to the *owner* and the building authority that quality requirements are implemented. Quality Control. System of shop and field controls implemented by the *seller* and *erector* to ensure that contract and company fabrication and erection requirements are met. Required Strength*. Forces, stress, and deformations produced in a *structural component*, determined by either *structural analysis*, for the *LRFD* or *ASD load combinations*, as appropriate, or as specified by these *Standard Specifications*. Resistance Factor, Φ . Factor that accounts for unavoidable deviations of the nominal strength from the actual strength and for the manner and consequences of failure. Safety Factor, Ω . Factor that accounts for deviations of the actual strength from the *nominal strength*, deviations of the actual *load* from the *nominal load*, uncertainties in the analysis that transforms the *load* into a
load effect and for the manner and consequences of failure. Seller. A company certified by the Joist Institute engaged in the manufacture and distribution of *joists*, *Joist Girders* and *accessories*. Service Load. Load under which serviceability limit states are evaluated. Serviceability Limit State. Limiting condition affecting the ability of a structure to preserve its appearance, maintainability, durability, or the comfort of its occupants or function of machinery, under normal usage. Slenderness Ratio. The ratio of the effective length of a column to the radius of gyration of the column about the same axis of bending. Span. The centerline-to-centerline distance between structural steel supports such as a beam, column or *Joist Girder* or the *clear span* distance plus four inches onto a masonry or concrete wall. Specified Minimum Yield Stress. Lower limit of yield stress specified for a material as defined by ASTM. Specifying Professional. The licensed professional who is responsible for sealing the building Contract Documents, which indicates that he or she has performed or supervised the analysis, design and document preparation for the structure and has knowledge of the load-carrying structural system. Splice. Connection between two structural members joined at their ends by either bolting or welding to form a single, longer member. Stability. Condition reached in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry does not produce large displacements. Stabilizer Plate. A steel plate at a column or wall inserted between the end of a bottom *chord* of a *joist* or *Joist Girder*. Standard Specifications. Documents developed and maintained by the Steel Joist Institute for the design and manufacture of open web steel joists and Joist Girders. The term "SJI Standard Specifications" encompass by reference the following: ANSI/SJI-K-2010 Standard Specification for Open Web Steel Joists, K-Series; ANSI/SJI-LH/DLH-2010 Standard Specifications for Longspan Steel Joists, LH-Series and Deep Longspan Steel Joists, DLH-Series; ANSI/SJI-JG-2010 Standard Specifications for Joist Girders and ANSI/CJ-2010 Standard Specifications for Composite Steel Joists. Strength Limit State. Limiting condition affecting the safety of the structure, in which the ultimate load-carrying capacity is reached. Structural Analysis. Determination of *load effects* on members and connections based on principles of structural mechanics. Structural Drawings. The graphic or pictorial portions of the Contract Documents showing the design, location and dimensions of the work. These documents generally include plans, elevations, sections, details, connections, all loads, schedules, diagrams and notes. Tagged End. The end of a *joist* or *Joist Girder* where an identification or piece mark is shown by a metal tag. The member must be erected with this tagged end in the same position as the tagged end noted on the *placement plan*. Tensile Strength (of material). Maximum tensile stress that a material is capable of sustaining as defined by ASTM. Tie Joist. A *joist* that is bolted at a column. Top Chord Extension (TCX). The extended part of a *joist* top chord. This type of extension only has the two top chord angles extended past the joist seat. Torsional Buckling. Buckling mode in which a compression member twists about its shear center axis. Unbraced Length. Distance between braced points of a member, measured between the centers of gravity of the bracing members. Variable Load. Load not classified as permanent load. Webs. The vertical or diagonal members joined at the top and bottom *chords* of a *joist* or *Joist Girder* to form triangular patterns. Yield Point. First stress in a material at which an increase in strain occurs without an increase in stress as defined by ASTM. Yield Strength. Stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain as defined by ASTM. Yield Stress. Generic term to denote either *yield point* or *yield strength*, as appropriate for the material. #### NOTES: - * These terms are usually qualified by the type of *load effect*, e.g., nominal tensile strength, available compressive strength, design flexural strength. - **Term usually qualified by the type of component, e.g. local web buckling, local flange buckling, etc. # OSHA SAFETY STANDARDS FOR STEEL ERECTION # **BAY LENGTH DEFINITIONS** **JOIST GIRDERS** STEEL BEAM STEEL CHANNEL STEEL COLUMN STEEL COLUMN STEEL TUBE **STEEL TUBE** **MASONRY OR TILT-UP** **MASONRY OR TILT-UP** MASONRY WITH PILASTER **MASONRY OR TILT-UP** **MASONRY OR TILT-UP** MASONRY WITH FACE BRICK # § 1926.751 **DEFINITIONS** (Selected items only). Anchored bridging means that the steel joist bridging is connected to a bridging terminus point. Bolted diagonal bridging means diagonal bridging that is bolted to a steel joist or joists. Bridging clip means a device that is attached to the steel joist to allow the bolting of the bridging to the steel joist. Bridging terminus point means a wall, a beam, tandem joists (with all bridging installed and a horizontal truss in the plane of the top chord) or other element at an end or intermediate point(s) of a line of bridging that provides an anchor point for the steel joist bridging. Column means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do not include posts. Constructibility means the ability to erect structural steel members in accordance with subpart R without having to alter the over-all structural design. Construction load (for joist erection) means any load other than the weight of the employee(s), the joists and the bridging bundle. Erection bridging means the bolted diagonal bridging that is required to be installed prior to releasing the hoisting cables from the steel joists. <u>Personal fall arrest system</u> means a system used to arrest an employee in a fall from a working level. A personal fall arrest system consists of an anchorage, connectors, a body harness and may include a lanyard, deceleration device, lifeline, or suitable combination of these. The use of a body belt for fall arrest is prohibited. <u>Project structural engineer</u> means the registered, licensed professional responsible for the <u>design</u> of structural steel framing and whose seal appears on the structural contract documents. Qualified person (also defined in § 1926.32) means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated the ability to solve or resolve problems relating to the subject matter, the work, or the project. Steel joist means an open web, secondary load-carrying member of 144 feet (43.9 m) or less, designed by the manufacturer, used for the support of floors and roofs. This does not include structural steel trusses or cold-formed joists. Steel joist girder means an open web, primary load-carrying member, designed by the manufacturer, used for the support of floors and roofs. This does not include structural steel trusses. Structural steel means a steel member, or a member made of a substitute material (such as, but not limited to, fiberglass, aluminum or composite members). These members include, but are not limited to, steel joists, joist girders, purlins, columns, beams, trusses, splices, seats, metal decking, girts, and all bridging, and cold formed metal framing which is integrated with the structural steel framing of a building. # § 1926.757 OPEN WEB STEEL JOISTS - (a) General. - (1) Except as provided in paragraph (a)(2) of this section, where steel joists are used and columns are not framed in at least two directions with solid web structural steel members, a steel joist shall be field-bolted at the column to provide lateral stability to the column during erection. For the installation of this joist: - (i) A vertical stabilizer plate shall be provided on each column for steel joists. The plate shall be a minimum of 6 inch by 6 inch (152 mm by 152 mm) and shall extend at least 3 inches (76 mm) below the bottom chord of the joist with a 13 /16 inch (21 mm) hole to provide an attachment point for guying or plumbing cables. - (ii) The bottom chords of steel joists at columns shall be stabilized to prevent rotation during erection. - (iii) Hoisting cables shall not be released until the seat at each end of the steel joist is field-bolted, and each end of the bottom chord is restrained by the column stabilizer plate. - (2) Where constructibility does not allow a steel joist to be installed at the column: - (i) an alternate means of stabilizing joists shall be installed on both sides near the column and shall: - (A) provide stability equivalent to paragraph (a)(1) of this section; - (B) be designed by a qualified person; - (C) be shop installed; and - (D) be included in the erection drawings. - (ii) hoisting cables shall not be released until the seat at each end of the steel joist is field-bolted and the joist is stabilized. - (3) Where steel joists at or near columns span 60 feet (18.3 m) or less, the joist shall be designed with sufficient strength to allow one employee to release the hoisting cable without the need for erection bridging. - (4) Where steel joists at or near columns span more than 60 feet (18.3 m), the joists shall be set in tandem with all bridging installed unless an alternative method of erection, which provides equivalent stability to the steel joist, is designed by a qualified person and is included in the site-specific erection plan. - (5) A steel joist or steel joist girder shall not be placed on any support structure unless such structure is stabilized. - (6) When steel joist(s) are landed on a structure, they shall be secured to prevent unintentional displacement prior to installation. - (7) No modification that affects the strength of a
steel joist or steel joist girder shall be made without the approval of the project structural engineer of record. - (8) Field-bolted joists. - (i) Except for steel joists that have been pre-assembled into panels, connections of individual steel joists to steel structures in bays of 40 feet (12.2 m) or more shall be fabricated to allow for field bolting during erection. - (ii) These connections shall be field-bolted unless constructibility does not allow. - (9) Steel joists and steel joist girders shall not be used as anchorage points for a fall arrest system unless written approval to do so is obtained from a qualified person. - (10) A bridging terminus point shall be established before bridging is installed. - (b) Attachment of steel joists and steel joist girders. - (1) Each end of "K" series steel joists shall be attached to the support structure with a minimum of two 1/8 -inch (3 mm) fillet welds 1 inch (25 mm) long or with two 1/2 -inch (13 mm) bolts, or the equivalent. - (2) Each end of "LH" and "DLH" series steel joists and steel joist girders shall be attached to the support structure with a minimum of two 1/4 -inch (6 mm) fillet welds 2 inches (51 mm) long, or with two 3/4 -inch (19 mm) bolts, or the equivalent. - (3) Except as provided in paragraph (b)(4) of this section, each steel joist shall be attached to the support structure, at least at one end on both sides of the seat, immediately upon placement in the final erection position and before additional joists are placed. - (4) Panels that have been pre-assembled from steel joists with bridging shall be attached to the structure at each corner before the hoisting cables are released. - (c) Erection of steel joists. Iniet - (1) Both sides of the seat of one end of each steel joist that requires bridging under Tables A and B shall be attached to the support structure before hoisting cables are released. - (2) For joists over 60 feet, both ends of the joist shall be attached as specified in paragraph (b) of this section and the provisions of paragraph (d) of this section met before the hoisting cables are released. - (3) On steel joists that do not require erection bridging under Tables A and B, only one employee shall be allowed on the joist until all bridging is installed and anchored. - ► NOTE: TABLES "A" & "B" HAVE BEEN EDITED TO CONFORM WITH STEEL JOIST INSTITUTE BOLTED DIAGONAL BRIDGING REQUIREMENTS. EDITED ITEMS ARE SHOWN WITH A STRIKE THROUGH NOTATION. NEW ITEMS ARE SHOWN IN RED #### ► NOTE: TABLE A. – ERECTION BRIDGING FOR SHORT SPAN JOISTS | JOIST | | |---------|--------| | 8L1 8K1 | | | 10K1 | . NM | | 12K1 | . 23–0 | | 12K3 | . NM | | 12K5 | | | 14K1 | | | 14K3 | . NM | | 14K4 | . NM | | 14K6 | . NM | | 16K2 | . 29–0 | | 16K3 | . 30–0 | | 16K4 | . 32–0 | | 16K5 | . 32–0 | | 16K6 | . NM | | 16K7 | . NM | | 16K9 | . NM | | 18K3 | . 31–0 | | 18K4 | . 32–0 | | 18K5 | . 33–0 | | 18K6 | . 35–0 | | 18K7 | | | 18K9 | | | 18K10 | | | 20K3 | | | 20K4 | | | LVIX I | . 5- 0 | | 20K5 | 34–0 | |-------|--------------------| | 20K6 | 36–0 | | 20K7 | 39–0 | | 20K9 | 39–0 | | 20K10 | NM | | 22K4 | 34–0 | | 22K5 | 35–0 | | 22K6 | 36–0 | | 22K7 | 40–0 | | 22K9 | 40–0 | | 22K10 | 40–0 NM | | 22K11 | 40–0 NM | | 24K4 | 36–0 | | 24K5 | 38–0 | | 24K6 | 39–0 | | 24K7 | 43–0 | | 24K8 | 43–0 | | 24K9 | 44–0 | | 24K10 | NM | | 24K12 | NM | | 26K5 | 38–0 | | 26K6 | 39–0 | | | | NM = diagonal bolted bridging not mandatory for joists under 40 feet. # ► NOTE: TABLE A. – ERECTION BRIDGING FOR SHORT SPAN JOISTS (continued) | orienti di Ait dolo io (continuca) | | |---|------| | Joist | Span | | 26K7 | 43-0 | | 26K8 | | | 26K9 | | | 26K10 | | | 26K12 | | | 28K6 | | | 28K7 | 43-0 | | 28K8 | | | 28K9 | | | 28K10 | | | 28K12 | | | 30K7 | 44-0 | | 30K8 | | | 30K9 | 45-0 | | 30K10 | 50-0 | | 30K11 | | | 30K12 | 54-0 | | 10KCS1 | NM | | 10KCS2 | | | 10KCS3 | | | 12KCS1 | | | 12KCS2 | | | 12KCS3 | | | 14KCS1 | | | 14KCS2 | | | 14KCS3 | | | 16KCS2 | | | 16KCS3 | | | 16KCS4 | | | 16KCS5 | | | 18KCS2 | | | 18KCS3 | | | 18KCS4 | | | 18KCS5 | | | 20KCS2 | | | 20KCS3 | | | 20KCS4 | | | 20KCS5 | NM | | 22KCS2 | | | 22KCS3 | | | 22KCS4 | | | 22KCS5 | | | 24KCS2 | 39-0 | | 24KCS3 | 44–0 | | 24KCS4 | NM | | 24KCS5 | | | 26KCS2 | 39–0 | | 26KCS3 | | | 26KCS4 | NM | | 26KCS5 | | | 28KCS2 | | | 28KCS3 | | | 28KCS4 | 53-0 | | 28KCS5 | 53-0 | | 30KC53 30KCS3 | 45-0 | | 30KCS4 | 54-0 | | 30KCS5 | 54-0 | | NM - diagonal holted bridging not mandatory | | # NM = diagonal bolted bridging not mandatory for joists under 40 feet. # ► NOTE: TABLE A. – ERECTION BRIDGING FOR LONG SPAN JOISTS | Joist | Span | |---------------------------------------|----------------------| | | • | | 18LH02 | 33–0 | | 18LH03 | NM | | | | | 18LH04 | NM | | 18LH05 | NM _ | | 18LH06 | NM | | | 1 1111 | | 18LH07 | NM | | 18LH08 | NM | | | NM | | 18LH09 | | | 20LH02 | 33–0 | | 20LH03 | 38-0 | | | NM | | 20LH04 | 1 1111 | | 20LH05 | NM | | 20LH06 | NM | | | NM | | 20LH07 | | | 20LH08 | NM | | 20LH09 | NM | | | | | 20LH10 | NM | | 24LH03 | 35–0 | | 24LH04 | 39-0 | | | | | 24LH05 | 40–0 | | 24LH06 | 45–0 | | 24LH07 | NM | | | | | 24LH08 | NM | | 24LH09 | NM | | 24LH10 | NM | | | | | 24LH11 | NM | | 28LH05 | 42–0 | | 28LH06 | 42-0 46-0 | | | | | 28LH07 | NM 54-0 | | 28LH08 | NM 54-0 | | | NM | | 28LH09 | | | 28LH10 | NM | | 28LH11 | NM | | | NM | | 28LH12 | | | 28LH13 | NM | | 32LH06 | 47–0 through | | | ir o unough | | 60-0 | | | 32LH07 | 47–0 through | | 60-0 | · · | | 32LH08 | CC Otherovela | | | 55–0 through | | 60–0 | | | 32LH09 | NM through 60-0 | | | | | 32LH10 | NM through 60–0 | | 32LH11 | NM through 60–0 | | 32LH12 | | | | | | 32LH13 | • | | 32LH14 | NM through 60–0 | | 32LH15 | | | | | | 36LH07 | 47–0 through | | 60–0 | | | 36LH08 | 47 Othrough | | | 47-0 through | | 60–0 | | | 36LH09 | 57–0 through | | | c, canoagn | | 60–0 | | | 36LH10 | NM through 60–0 | | 36LH11 | | | | | | 36LH12 | | | 36LH13 | NM through 60-0 | | 36LH14 | | | | | | 36LH15 | | | 40LH08 | 47-0 through 59-0 | | 40LH09 | | | | | | 44LH09 | | | NIM diagonal halted bridging not mand | oton. | NM = diagonal bolted bridging not mandatory for joists under 40 feet. - (4) Employees shall not be allowed on steel joists where the span of the steel joist is equal to or greater than the span shown in Tables A and B except in accordance with § 1926.757(d). - (5) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide stability. #### (d) Erection bridging. - (1) Where the span of the steel joist is equal to or greater than the span shown in Tables A and B, the following shall apply: - (i) A row of bolted diagonal erection bridging shall be installed near the midspan of the steel joist; - (ii) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored; and - (iii) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - (2) Where the span of the steel joist is over 60 feet (18.3 m) through 100 feet (30.5 m), the following shall apply: - (i) All rows of bridging shall be bolted diagonal bridging; - (ii) Two rows of bolted diagonal erection bridging shall be installed near the third points of the steel joist; - (iii) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored; and - (iv) No more than two employees shall be allowed on these spans until all other bridging is installed and anchored. - (3) Where the span of the steel joist is over 100 feet (30.5 m) through 144 feet (43.9 m), the following shall apply: - (i) All rows of bridging shall be bolted diagonal bridging; - (ii) Hoisting cables shall not be released until all bridging is installed and anchored; and - (iii) No more than two employees shall be allowed on these spans until all bridging is installed and anchored. - (4) For steel members spanning over 144 feet (43.9 m), the erection methods used shall be in accordance with § 1926.756. - (5) Where any steel joist specified in paragraphs (c)(2) and (d)(1), (d)(2), and (d)(3) of this section is a bottom chord bearing joist, a row of bolted diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. - (6) When bolted diagonal erection bridging is required by this section, the following shall apply: - (i) The bridging shall be indicated on the erection drawing: - (ii) The erection drawing shall be the exclusive indicator of the proper placement of this bridging; - (iii) Shop-installed bridging clips, or functional equivalents, shall be used where the bridging bolts to the steel joists; - (iv) When two pieces of bridging are attached to the steel joist by a common bolt, the nut that secures the first piece of bridging shall not be removed from the bolt for the attachment of the second; and - (v) Bridging attachments shall not protrude above the top chord of the steel joist. #### (e) Landing and placing loads. - (1) During the construction period, the employer placing a load on steel joists shall ensure that the load is distributed so as not to exceed the carrying capacity of any steel joist. - (2) Except for paragraph (e)(4) of this section, no construction loads are allowed on the steel joists until all bridging is installed and anchored and all joist-bearing ends are attached. - (3) The weight of a bundle of joist bridging shall not exceed a total of 1,000 pounds (454 kg). A bundle of joist bridging shall be placed on a minimum of three steel joists that are secured at one end. The edge of the bridging bundle shall be positioned within 1 foot (.30 m) of the secured end. - (4) No bundle of decking may be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless all of the following conditions
are met: - (i) The employer has first determined from a qualified person and documented in a site-specific erection plan that the structure or portion of the structure is capable of supporting the load; - (ii) The bundle of decking is placed on a minimum of three steel joists; - (iii) The joists supporting the bundle of decking are attached at both ends; - (iv) At least one row of bridging is installed and anchored; - (v) The total weight of the bundle of decking does not exceed 4,000 pounds (1816 kg); and - (vi) Placement of the bundle of decking shall be in accordance with paragraph (e)(5) of this section. - (5) The edge of the construction load shall be placed within 1 foot (.30 m) of the bearing surface of the joist end. # ILLUSTRATIONS OF OSHA BRIDGING TERMINUS POINTS (NON-MANDATORY) Guidelines for Complying with OSHA Steel Erection Standard, Paragraph §1926.757(a)(10) and §1926.757(c)(5). HORIZONTAL BRIDGING TERMINUS AT WALL HORIZONTAL BRIDGING TERMINUS AT PANEL WALL HORIZONTAL BRIDGING TERMINUS AT WALL HORIZONTAL BRIDGING TERMINUS AT STRUCTURAL SHAPE HORIZONTAL BRIDGING TERMINUS AT STRUCTURAL SHAPE WITH OPTIONAL "X-BRIDGING" BOLTED DIAGONAL BRIDGING TERMINUS AT WALL BOLTED DIAGONAL BRIDGING TERMINUS AT WALL BOLTED DIAGONAL BRIDGING TERMINUS AT WALL JOISTS PAIR BRIDGING TERMINUS POINT JOISTS PAIR BRIDGING TERMINUS POINT HORIZONTAL BRIDGING TERMINUS POINT SECURED BY TEMP. GUY CABLES DIAGONAL BRIDGING TERMINUS POINT SECURED BY TEMP. GUY CABLES # **PUBLICATIONS** Vulcraft (Refer to back cover for address and telephone number of division nearest you) STEEL JOISTS AND JOIST GIRDERS 2012 VULCRAFT COMPOSITE AND NONCOMPOSITE FLOOR JOISTS 2009 DESIGNING WITH VULCRAFT JOIST, STEEL JOIST GIRDERS AND STEEL DECK, 2nd ed. James Fisher, Ph.D., P.E., Michael West, P.E., AlA, Juius P. Van de Pas, P.E. (A 168 page book provided to engineers and architects for help in designing with steel joists, joist girders and steel deck) **STEEL DECK INSTITUTE -** P.O. Box 25, Fox River Grove, IL 60021 Phone: (847) 458-4647 Fax (847) 458-4648 e-mail steve@sdi.org DESIGN MANUAL FOR COMPOSITE DECKS, FORM DECKS AND ROOF DECKS - NO. 31 ROOF DECK CONSTRUCTION HANDBOOK - NO. RDCH1 DIAPHRAGM DESIGN MANUAL SECOND EDITION NO. DDMO3 COMPREHENSIVE STEEL DECK INSTITUTE BINDER - NO. BF SDI MANUAL OF CONSTRUCTION WITH STEEL DECK - NO. MOC2 COMPOSITE STEEL DECK DESIGN HANDBOOK. NO. CDD2 STANDARD PRACTICE DETAILS. - NO. SPD2 DECK DAMAGE & PENETRATIONS - NO. DDP HOW TO UPDATE DIAPHRAGM TABLES - NO. HUDT METAL DECK & CONCRETE QUANTITIES - NO. MDCQ A RATIONAL APPROACH TO STEEL DECK CORROSION PROTECTION - NO. SDCP Steel Joist Institute - 234 W. Cheves Street, Florence, SC 29501 (843) 407-4091 Fax: (843) 407-4044, e-mail: stljoist@infi.net, web site: www.steeljoist.org STANDARD SPECIFICATIONS, LOAD TABLES AND WEIGHT TABLES FOR STEEL JOISTS AND JOIST GIRDERS 43RD Edition (2010) 80 YEARS OF OPEN WEB STEEL JOIST CONSTRUCTION (2009) TECHNICAL DIGEST #3 - Ponding (June 2007) TECHNICAL DIGEST #5 - Vibration (1988) TECHNICAL DIGEST #6 - Uplift Loading (June 2003) TECHNICAL DIGEST #8 - Welding of Open Web Steel Joist (October 2008) TECHNICAL DIGEST #9 - Handling and Erection (March 2009) TECHNICAL DIGEST #10 - Design of Fire Resistive Assemblies with Steel Joists (2003) TECHNICAL DIGEST #11 - Design of Joist - Girder Frames (November 2007) TECHNICAL DIGEST #12 - Evaluation and Modification of Open Web Joists and Joists Girders (February 2007) GUIDE FOR SPECIFYING STEEL JOISTS WITH LOAD AND RESISTANCE FACTOR DESIGN (2002) NEW LRFD GUIDE (2000) COMPUTER VIBRATION PROGRAM Ver1.2 (Used in Conjunction with Technical Digest #5) SJI VIDEO - Introduction to Steel Joists VIDEO - SAFE ERECTION OF OPEN WEB STEEL JOISTS AND JOIST GIRDERS (English & Spanish) # **Manufacturing Locations** # **ALABAMA** 7205 Gault Avenue N. Fort Payne, AL 35967 P.O. Box 680169 Fort Payne, AL 35968 256-845-2460 Fax: 256-845-2823 # **NEBRASKA** 1601 West Omaha Avenue Norfolk, NE 68701 P.O. Box 59 Norfolk, NE 68702 402-644-8500 Fax: 402-644-8528 #### TEXAS 175 County Road 2345 P.O. Box 186 Grapeland, TX 75844 936-687-4665 Fax: 936-687-4290 # INDIANA 6610 County Road 60 P.O. Box 1000 St. Joe, IN 46785 260-337-1800 Fax: 260-337-1801 # **SOUTH CAROLINA** 1501 West Darlington Street P.O. Box 100520 Florence, SC 29501 843-662-0381 Fax: 843-662-3132 ## UTAH 1875 West Highway 13 South P.O. Box 637 Brigham City, UT 84302 435-734-9433 Fax: 435-723-5423 # **VULCRAFT OF NEW YORK, INC.** 5362 Railroad Street Chemung, NY 14825 607-529-9000 Fax: 607-529-9001 # **VULCRAFT - NATIONAL ACCOUNTS** 1000 Hurricane Shoals Road Building A - Suite 150 Lawrenceville, GA 30043 770-338-0970 Fax: 770-295-0001